Intraglottal pressure distributions depend upon glottal shape, size, and diameter. This study reports the effects of varying glottal angle on intraglottal and transglottal pressures using a three-dimensional Plexiglas™ model with a glottis having nine symmetric glottal angles and a constant minimal glottal diameter of 0.06cm. The empirical data were supported by computational results using FLUENT. The results suggested that (1) the greater the convergent glottal angle, the greater outward driving forces (higher intraglottal pressures) on the vocal folds; (2) flow resistance was greatest for the uniform glottis, and least for the 10° divergent glottis; (3) the greatest negative pressure in the glottis and therefore the greatest pressure recovery for diverging glottal shapes occurred for an angle of 10°; (4) the smaller the convergent angle, the greater the flow resistance; (5) FLUENT was highly accurate in predicting the empirical pressures of this model; (6) flow separation locations (given by FLUENT) for the divergent glottis moved upstream for larger flows and larger glottal angles. The results suggest that phonatory efficiency related to aerodynamics may be enhanced with vocal fold oscillations that include large convergent angles during glottal opening and small (5°–10°) divergent angles during glottal closing.

1.
Agarwal
,
M.
,
Scherer
,
R. C.
, and
Hollien
,
H.
(
2003
). “
The false vocal folds: Shape and size in frontal view during phonation based on laminagraphic tracings
,”
J. Voice
17
,
97
113
.
2.
Alipour
,
F.
, and
Scherer
,
R. C.
(
2004
). “
Flow separation in a computational oscillating vocal fold model
,”
J. Acoust. Soc. Am.
116
,
1710
1719
.
3.
Alipour
,
F.
, and
Scherer
,
R. C.
(
2000
). “
Pressure-flow relationship in a Hemilarynx mechanical model
,” in
Proceedings of the Fifth Seminar on Speech Production: Models and Data & CREST Workshop on Models of Speech Production: Motor Planning and Articulatory Modelling
(
Kloster Seeon
, Bavaria, Germany), pp.
189
192
.
4.
Alipour
,
F.
,
Scherer
,
R. C.
, and
Knowles
,
J.
(
1996
). “
Velocity distributions in glottal models
,”
J. Voice
10
,
50
58
.
5.
Binh
,
N.
, and
Gauffin
,
J.
(
1983
). “
Aerodynamic measurements in an enlarged static laryngeal model
,” STL-QPSR
2–3
, Dept. of Speech Communications and Music Acoustics,
R. Inst. Tech. Stockholm
,
36
60
.
6.
Deverge
,
M.
,
Pelorson
,
X.
,
Vilain
,
C.
,
Lagree
,
P.-Y.
,
Chentouf
,
F.
,
Willems
,
J.
, and
Hirschberg
,
A.
(
2003
). “
Influence of collision on the flow through in-vitro rigid models of the vocal folds
,”
J. Acoust. Soc. Am.
114
,
3354
3362
.
7.
Flanagan
,
J. L.
(
1972
).
Speech Analysis, System, and Perception
, 2nd ed. (
Springer
, New York).
8.
Fulcher
,
L. P.
,
Scherer
,
R. C.
,
Zhai
,
G.
, and
Zhu
,
Z.
(in press). “
Analytic representation of volume flow as a function of geometry and pressure in a static physical model of the glottis
,”
J. Voice
.
9.
Gauffin
,
J.
,
Binh
,
N.
,
Ananthapadmanabha
,
T. V.
, and
Fant
,
G.
(
1983
). “
Glottal geometry and volume velocity waveform
,” in
Vocal Fold Physiology: Contemporary Research and Clinical Issues
, edited by
D. M.
Bless
and
J. H.
Abbs
(
College Hill
, San Diego), pp.
194
201
.
10.
Guo
,
C. G.
, and
Scherer
,
R. C.
(
1993
). “
Finite element simulation of glottal flow and pressure
,”
J. Acoust. Soc. Am.
94
,
688
700
.
11.
Hirano
,
M.
,
Kiyokawa
,
K.
, and
Kuria
,
S.
(
1988
). “
Laryngeal muscles and glottis shaping
,” in
Vocal Physiology: Voice Production, Mechanisms and Functions
, edited by
O.
Fujimura
(
Raven
, New York), pp.
49
65
.
12.
Hofmans
,
G. C. J.
(
1998
).
Vortex Sound in Confined Flows
(
Technische Universiteit Eindhoven
, Eindhoven).
13.
Hofmans
,
G. C. J.
,
Groot
,
G.
,
Ranucci
,
M.
,
Graziani
,
G.
, and
Hirschberg
,
A.
(
2003
). “
Unsteady flow through in-vitro models of the glottis
,”
J. Acoust. Soc. Am.
113
,
1658
1675
.
14.
Ishizaka
,
K.
, and
Flanagan
,
J. L.
(
1972
). “
Synthesis of voiced sounds from a two-mass model of the vocal cords
,”
Bell Syst. Tech. J.
51
,
1233
1268
.
15.
Ishizaka
,
K.
, and
Matsudaira
,
M.
(
1972
). “
Fluid mechanical considerations of vocal cord vibration
,” SCRL Monograph No. 8, Speech Communications Research Laboratory, Inc., Santa Barbara.
16.
Kline
,
S. J.
(
1959
). “
On the nature of stall
,”
J. Basic Eng.
81
,
302
322
.
17.
Kucinschi
,
B. R.
(
2004
). “
An analysis of the flow through a driven mechanical model of the vocal folds
,” dissertation,
University of Toledo
.
18.
Li
,
S.
,
Scherer
,
R. C.
,
Minxi
,
W.
,
Wang
,
S.
, and
Wu
,
H.
, “
The effects of inferior and superior vocal fold surface angles on vocal fold pressure distributions
,”
J. Acoust. Soc. Am.
(in press).
19.
Li
,
S.
,
Scherer
,
R. C.
,
Wan
,
M.
,
Wang
,
S.
, and
Wu
,
H.
, “
The effects of entrance radii on intraglottal pressure distributions in the divergent glottis
,”
J. Acoust. Soc. Am.
(in press).
20.
Lucero
,
J. C.
(
1999
). “
A theoretical study of the hysteresis phenomenon at vocal fold oscillation onset-offset
,”
J. Acoust. Soc. Am.
105
,
423
431
.
21.
Massey
,
B. S.
(
1979
).
Mechanics of Fluids
, 4th ed. (
Van Nostrand Reinhold
, New York).
22.
McGowan
,
R. S.
(
1993
). “
The quasisteady approximation in speech production
,”
J. Acoust. Soc. Am.
94
,
3011
3013
.
23.
Mongeau
,
L.
,
Franchek
,
C.
,
Coker
,
R.
, and
Kubli
,
R. A.
(
1997
). “
Characteristics of a pulsating jet through a small modulated oriface, with applications to voice production
,”
J. Acoust. Soc. Am.
102
,
1121
1134
.
24.
Pedley
,
T. J.
(
1983
). “
Wave phenomena in physiological flows
,”
Appl. Math. (Germany)
32
,
267
287
.
25.
Pelorson
,
X.
(
2001
). “
On the meaning and accuracy of the pressure-flow technique to determine constrictions within the vocal tract
,”
Speech Commun.
35
,
179
190
.
26.
Pelorson
,
X.
,
Hirschberg
,
A.
,
Wijnands
,
A. P. J.
, and
Auregan
,
Y.
(
1994
). “
Theoretical and experimental study of quasisteady-flow separation within the glottis during phonation. Application to a modified two-mass model
,”
J. Acoust. Soc. Am.
96
,
3416
3431
.
27.
Rayle
,
R. E.
(
1958
). “
Influence of orifice geometry on static pressure measurements
,”
Am. Soc. Mech. Eng.
, paper 59-A-234.
28.
Scherer
,
R. C.
, and
Shinwari
,
D.
(
2000
). “
Glottal pressure profiles for a diameter of 0.04cm
,”
J. Acoust. Soc. Am.
107
,
2905
.
29.
Scherer
,
R. C.
,
Shinwari
,
D.
,
Witt
,
K. J. D.
,
Zhang
,
C.
,
Kucinschi
,
B. R.
, and
Afjeh
,
A. A.
(
2001a
). “
Intraglottal pressure profiles for a symmetric and oblique glottis with a divergence angle of 10degrees
,”
J. Acoust. Soc. Am.
109
,
1616
1630
.
30.
Scherer
,
R. C.
,
Shinwari
,
D.
,
Witt
,
K. J. D.
,
Zhang
,
C.
,
Kucinschi
,
B.
, and
Afjeh
,
A. A.
(
2002
). “
Intraglottal pressure profiles for a symmetric and oblique glottis with a uniform duct
,”
J. Acoust. Soc. Am.
112
,
1253
1256
.
31.
Scherer
,
R. C.
,
Witt
,
K. J. D.
, and
Kucinschi
,
B. R.
(
2001b
). “
The effect of exit radii on intraglottal pressure distributions in the convergent glottis
,”
J. Acoust. Soc. Am.
110
,
2267
2269
.
32.
Shinwari
,
D.
,
Scherer
,
R. C.
,
J.DeWitt
,
K.
, and
Afjeh
,
A. A.
(
2003
). “
Flow visualization and pressure distributions in a model of the glottis with a symmetric and oblique divergent angle of 10degrees
,”
J. Acoust. Soc. Am.
113
,
487
497
.
33.
Streeter
,
V. L.
, and
Wylie
,
E. B.
(
1975
).
Fluid Mechanics
(
McGraw-Hill
, New York).
34.
Titze
,
I. R.
(
1986
). “
Mean intraglottal pressure in vocal fold oscillation
,”
J. Phonetics
14
,
359
364
.
35.
Titze
,
I. R.
(
1994
).
Principles of Voice Production
(
Prentice-Hall
,
Englewood Cliffs, NJ
).
36.
Titze
,
I. R.
(
1974
). “
The human vocal cords: A mathematical model Part II
,”
Phonetica
29
,
1
21
.
37.
Zhang
,
Z.
,
Mongeau
,
L.
, and
Frankel
,
S. H.
(
2002
). “
Experimental verification of the quasisteady approximation for aerodynamic sound generation by pulsating jets in tubes
,”
J. Acoust. Soc. Am.
112
,
1652
1663
.
You do not currently have access to this content.