This paper studies the effect of bilateral hearing aids on directional hearing in the frontal horizontal plane. Localization tests evaluated bilateral hearing aid users using different stimuli and different noise scenarios. Normal hearing subjects were used as a reference. The main research questions raised in this paper are: (i) How do bilateral hearing aid users perform on a localization task, relative to normal hearing subjects? (ii) Do bilateral hearing aids preserve localization cues, and (iii) Is there an influence of state of the art noise reduction algorithms, more in particular an adaptive directional microphone configuration, on localization performance? The hearing aid users were tested without and with their hearing aids, using both a standard omnidirectional microphone configuration and an adaptive directional microphone configuration. The following main conclusions are drawn. (i) Bilateral hearing aid users perform worse than normal hearing subjects in a localization task, although more than one-half of the subjects reach normal hearing performance when tested unaided. For both groups, localization performance drops significantly when acoustical scenarios become more complex. (ii) Bilateral, i.e., independently operating hearing aids do not preserve localization cues. (iii) Overall, adaptive directional noise reduction can have an additional and significant negative impact on localization performance.

1.
Blauert
,
J.
(
1997
).
Spatial hearing, the psychophysics of human sound localization
.
The MIT Press
, Cambridge, MA.
2.
Bronkhorst
,
A. W.
, and
Plomp
,
R.
(
1998
). “
The effect of head-induced interaural time and level differences on speech intelligibility in noise
,”
J. Acoust. Soc. Am.
83
(
4
),
1508
1516
.
3.
Bronkhorst
,
A. W.
, and
Plomp
,
R.
(
1989
). “
Binaural speech intelligibility in noise for hearing impaired listeners
,”
J. Acoust. Soc. Am.
86
(
4
),
1374
1383
.
4.
Byrne
,
D.
,
Sinclair
,
S.
, and
Noble
,
W.
(
1998
). “
Open earmold fittings for improving aided auditory localization for sensorineural hearing losses with good high-frequency hearing
,”
Ear Hear.
19
(
1
),
62
71
.
5.
Carlile
,
S.
,
Leong
,
P.
, and
Hyams
,
S.
(
1997
). “
The nature and distribution of errors in sound localization by human listeners
,”
Hear. Res.
114
,
179
196
.
6.
Dillon
,
H.
(
2001
).
Hearing aids
,
Boomerang Press
, Sydney.
7.
Dillon
,
H.
,
Keidser
,
G.
, and
Silberstein
,
H.
(
2003
). “
Sound quality comparisons of advanced hearing aids
,”
Hear. J.
56
(
4
),
1
6
.
8.
Kuhn
,
G. F.
(
2003
). “
Model of the interaural time differences in the azimuthal plane
,”
J. Acoust. Soc. Am.
62
(
1
),
157
167
.
9.
Gilkey
,
R. H.
and
Anderson
,
T. R.
(
1997
).
Binaural and spatial hearing in real and virtual environments
.
Lawrence Erlbaum associates
, Mahwah, NJ.
10.
Hartmann
,
W. M.
(
1999
). “
How we localize sound
,”
Phys. Today
11
,
24
29
.
11.
Hausler
,
R.
,
Colburn
,
S.
, and
Marr
,
E.
(
1983
). “
Sound localization in subjects with impaired hearing
,”
Acta Oto-Laryngol.
400
,
1
62
.
12.
Hofman
,
P. M.
, and
Van Opstal
,
J.
(
1998
). “
Spectro-temporal factors in two-dimensional human sound localization
,”
J. Acoust. Soc. Am.
103
(
5
),
2634
2648
.
13.
Langendijk
,
E. H. A.
, and
Bronkhorst
,
A. W.
(
2002
). “
Contribution of spectral cues to human sound localization
,”
J. Acoust. Soc. Am.
112
(
4
),
1583
1596
.
14.
Lorenzi
,
C. S.
,
Gatehouse
,
S.
, and
Lever
,
C.
(
1999a
). “
Sound localization in noise in hearing impaired listeners
,”
J. Acoust. Soc. Am.
105
(
6
),
3454
3463
.
15.
Lorenzi
,
C. S.
,
Gatehouse
,
S.
, and
Lever
,
C.
(
1999b
). “
Sound localization in noise in normal hearing listeners
,”
J. Acoust. Soc. Am.
105
(
3
),
1810
1820
.
16.
Makous
,
J. C.
, and
Middlebrooks
,
J. C.
(
1990
). “
Two-dimensional sound localization by human listeners
,”
J. Acoust. Soc. Am.
87
(
5
),
2188
2200
.
17.
Moore
,
B. C. J.
(
1997a
).
An introduction to the psychology of hearing
, Chap. 8:
Spatial hearing and related phenomena
,
Academic
, New York,
297
345
.
18.
Moore
,
B. C. J.
(
1997b
).
An introduction to the psychology of hearing
, Chap. 7: Space perception,
Academic
, New York,
223
267
.
19.
Noble
,
W.
,
Sinclair
,
S.
, and
Byrne
,
D.
(
1998
). “
Improvements in aided sound localization with open earmolds: Observations in people with high-frequency hearing loss
,”
J. Am. Acad. Audiol
9
(
1
),
25
34
.
20.
Noble
,
W.
,
Byrne
,
D.
, and
Lepage
,
B.
(
1994
). “
Effects on sound localization of configuration and type of hearing impairment
,”
J. Acoust. Soc. Am.
95
(
2
),
992
1005
.
21.
Noble
,
W.
, and
Byrne
,
D.
(
1990
). “
A comparison of different binaural hearing aid systems for sound localization in the horizontal and vertical planes
,”
Br. J. Audiol.
24
,
335
346
.
23.
Stevens
,
S. S.
, and
Newman
,
E. B.
(
1936
). “
The localization of actual sources of sound
,”
Am. J. Psychol.
48
,
297
306
.
24.
Van Hoesel
,
R. J. M.
, and
Tyler
,
R. S.
(
2003
). “
Speech perception, localization, and lateralization with bilateral cochlear implants
,”
J. Acoust. Soc. Am.
113
(
3
),
1617
1630
.
25.
Van Hoesel
,
R.
,
Ramsden
,
R.
, and
O’Driscoll
,
M.
(
2002
). “
Sound direction identification, interaural time delay discrimination, and speech intelligibility advantages in noise for a bilateral cochlear implant user
,”
Ear Hear.
23
(
2
),
137
149
.
26.
Wightman
,
F. L.
, and
Kistler
,
D. J.
(
1992
). “
The dominant role of low-frequency interaural time differences in sound localization
,”
J. Acoust. Soc. Am.
91
(
3
),
1648
1661
.
You do not currently have access to this content.