A computer model of the auditory periphery was used to address the question of what constitutes the physiological substrate of absolute auditory threshold. The model was first evaluated to show that it is consistent with experimental findings that auditory-nerve fiber spikes can be predicted to occur when the running integral of stimulus pressure reaches some critical value [P. Heil and H. Neubauer, J. Neurosci.15, 74047415 (2001)]. It was then modified to examine two ways in which the accumulation and clearance of receptor presynaptic calcium might explain this effect. Both methods gave results that matched the animal data. It was also shown how the rate of clearance of presynaptic calcium could be used to explain the origin of differences between low and high spontaneous-rate fiber types. When spiking activity is aggregated across a number of similar high spontaneous-rate fibers and used as the input to a model of a cochlear nucleus coincidence neuron, its response can be used to judge whether or not a stimulus is present. A simulated psychophysical experiment then demonstrated that this simple decision procedure can reproduce measurements of absolute auditory threshold for tones in quiet where the threshold is a joint function of both time and level.

1.
Clock
,
A. E.
,
Salvi
,
R. J.
,
Saunders
,
S. S.
, and
Powers
,
N. L.
(
1993
). “
Neural correlates of temporal integration in the cochlear nucleus of the chinchilla
,”
Hear. Res.
71
,
37
50
.
2.
Clock
,
A. E.
,
Salvi
,
R. J.
,
Wang
,
J.
, and
Powers
,
N. L.
(
1998
). “
Threshold-duration functions of chinchilla auditory nerve fibers
,”
Hear. Res.
119
,
135
141
.
3.
Eddins
,
D. A.
, and
Green
,
D. M.
(
1995
). “
Temporal integration and temporal resolution
,” in
Hearing
, edited by
B. C. J.
Moore
(
Academic
,
San Diego
), pp.
207
242
.
4.
Florentine
,
M.
,
Fastl
,
H.
, and
Buus
,
S.
(
1988
). “
Temporal integration in normal hearing, cochlear impairment, and impairment simulated by masking
,”
J. Acoust. Soc. Am.
84
,
195
203
.
5.
Gerken
,
G. M.
(
1979
). “
Temporal summation of pulsate brain stimulation in normal and deafened cats
,”
J. Acoust. Soc. Am.
66
,
728
734
.
6.
Gersuni
,
G. V.
(
1965
). “
Organization of afferent flow and the process of external signal discrimination
,”
Neuropsychologia
3
,
95
109
.
7.
Heil
,
P.
, and
Neubauer
,
H.
(
2001
). “
Temporal integration of sound pressure determines thresholds of auditory nerve fibers
,”
J. Neurosci.
15
,
7404
7415
.
8.
Heil
,
P.
, and
Neubauer
,
H.
(
2003
). “
A unifying basis of auditory thresholds based on temporal summation
,”
Proc. Natl. Acad. Sci. U.S.A.
100
,
6151
6156
.
9.
Hewitt
,
M. J.
, and
Meddis
,
R.
(
1991
). “
An evaluation of eight computer models of mammalian inner hair-cell function
,”
J. Acoust. Soc. Am.
90
,
904
917
.
10.
Hewitt
,
M. J.
, and
Meddis
,
R.
(
1993
). “
Regularity of cochlear nucleus stellate cells: A computational modeling study
,”
J. Acoust. Soc. Am.
93
,
3390
3399
.
11.
Hewitt
,
M. J.
, and
Meddis
,
R.
(
1994
). “
A Computer model of amplitude-modulation sensitivity of single units in the inferior colliculus
,”
J. Acoust. Soc. Am.
95
,
2145
2159
.
12.
Holmes
,
S.
,
Sumner
,
C.
,
O’Mard
,
L. P.
, and
Meddis
,
R.
(
2004
). “
The temporal representation of speech in a nonlinear model of the guinea pig cochlea
,”
J. Acoust. Soc. Am.
116
,
3534
3545
.
13.
Krishna
,
B. S.
(
2002
). “
A unified mechanism for spontaneous-rate and first-spike timing in the auditory nerve
,”
J. Comput. Neurosci.
13
,
71
91
.
14.
Levitt
,
H.
(
1971
). “
Transformed up and down methods in psychology
,”
J. Acoust. Soc. Am.
49
,
467
477
.
15.
Liberman
,
M. C.
, and
Kiang
,
N. Y. S.
(
1978
). “
Acoustic trauma in cats. Cochlear pathology and auditory-nerve activity
,”
Acta Otolaryngol. Suppl.
358
,
1
63
.
16.
Lopez-Poveda
,
E. A.
, and
Meddis
,
R.
(
2001
). “
A human nonlinear cochlear filterbank
,”
J. Acoust. Soc. Am.
110
,
3107
3118
.
17.
MacGregor
,
R. J.
(
1987
).
Neural and Brain Modeling
(
Academic
,
San Diego
).
18.
Meddis
,
R.
, and
O’Mard
,
L. P.
(
2005
). “
A computer model of the auditory nerve response to forward masking stimuli
,”
J. Acoust. Soc. Am.
117
,
3787
3798
.
19.
Meddis
,
R.
,
Hewitt
,
M. J.
, and
Shackleton
,
T.
(
1990
). “
Implementation details of a computational model of the inner hair-cell∕auditory-nerve synapse
,”
J. Acoust. Soc. Am.
87
,
1813
1818
.
20.
Meddis
,
R.
,
O’Mard
,
L. P.
, and
Lopez-Poveda
,
E. A.
(
2001
). “
A computational algorithm for computing nonlinear auditory frequency selectivity
,”
J. Acoust. Soc. Am.
109
,
2852
2861
.
21.
Sumner
,
C. J.
,
Lopez-Poveda
,
E. A.
,
O’Mard
,
L. P.
, and
Meddis
,
R.
(
2003a
). “
Adaptation in a revised inner-hair cell model
,”
J. Acoust. Soc. Am.
113
,
893
901
.
22.
Sumner
,
C. J.
,
O’Mard
,
L. P.
,
Lopez-Poveda
,
E. A.
, and
Meddis
,
R.
(
2003b
). “
A nonlinear filter-bank model of the guinea-pig cochlea
,”
J. Acoust. Soc. Am.
113
,
3264
3274
.
23.
Sumner
,
C. J.
,
O’Mard
,
L. P.
,
Lopez-Poveda
,
E. A.
, and
Meddis
,
R.
(
2002
). “
A revised model of the inner-hair cell and auditory nerve complex
,”
J. Acoust. Soc. Am.
111
,
2178
2189
.
24.
Viemeister
,
N. F.
,
Shivapuja
,
G.
, and
Recio
,
A.
(
1992
). “
Physiological correlates of temporal integration
,” in
Auditory Physiology and Perception
, edited by
Y.
Cazals
,
K.
Horner
, and
L.
Demany
(
Pergamon
,
Oxford
), pp.
323
329
.
25.
Wiegrebe
,
L.
, and
Meddis
,
R.
(
2004
). “
The representation of periodic sounds in simulated sustained chopper units of the ventral cochlear nucleus
,”
J. Acoust. Soc. Am.
115
,
1207
1218
.
26.
Winter
,
I. M.
,
Robertson
,
D.
, and
Yates
,
G. K.
(
1990
). “
Diversity of characteristic frequency rate-intensity functions in guinea pig auditory nerve fibers
,”
Hear. Res.
45
,
191
202
.
You do not currently have access to this content.