Moment equations and path integrals for wave propagation in random media have been applied to many ocean acoustics problems. Both these techniques make use of the Markov approximation. The expansion parameter, which must be less than one for the Markov approximation to be valid, is the subject of this paper. There is a standard parameter (the Kubo number) which various authors have shown to be sufficient. Fourth moment equations have been successfully used to predict the experimentally measured frequency spectrum of intensity in the mid-ocean acoustic transmission experiment (MATE). Yet, in spite of this success, the Kubo number is greater than 1 for the measured index of refraction variability for MATE, arriving at a contradiction. Here, that contradiction is resolved by showing that the Kubo parameter is far too pessimistic for the ocean case. Using the methodology of van Kampen, another parameter is found which appears to be both necessary and sufficient, and is much smaller than the Kubo number when phase fluctuations are dominated by large scales in the medium. This parameter is shown to be small for the experimental regime of MATE, justifying the applications of the moment equations to that experiment.

1.
Bell
,
B.
, and
Ewart
,
T. E.
(
1986
). “
Separating multipaths by global optimization of a multidimensional matched filter
,”
IEEE Trans. Acoust., Speech, Signal Process.
ASSP-34
,
1029
1037
.
2.
Beran
,
M. J.
, and
McCoy
,
J. J.
(
1974
). “
Propagation through an anisotropic random medium
,”
J. Math. Phys.
15
,
1901
1912
.
3.
Codona
,
J. L.
,
Creamer
,
D. B.
,
Flatté
,
S. M.
,
Frehlich
,
R. G.
, and
Henyey
,
F. S.
(
1985
). “
Average arrival time of wave pulses through continuous random media
,”
Phys. Rev. Lett.
55
,
9
11
.
4.
Codona
,
J. L.
,
Creamer
,
D. B.
,
Flatté
,
S. M.
,
Frehlich
,
R. G.
, and
Henyey
,
F. S.
(
1986
). “
Moment-equation and path-integral techniques for wave propagation in random media
,”
J. Math. Phys.
27
,
171
177
.
5.
Dashen
,
R.
(
1979
). “
Path integrals for waves in random media
,”
J. Math. Phys.
20
,
894
920
.
6.
Desaubies
,
Y. J. F.
(
1976
). “
Acoustic-phase fluctuations induced by internal waves in the ocean
,”
J. Acoust. Soc. Am.
60
,
795
800
.
7.
Desaubies
,
Y. J. F.
(
1978
). “
On the scattering of sound by internal waves in the ocean
,”
J. Acoust. Soc. Am.
64
,
1460
1469
.
8.
Ewart
,
T. E.
(
1976
). “
Acoustic fluctuations in the open ocean—a measurement using a fixed refracted path
,”
J. Acoust. Soc. Am.
60
,
46
59
.
9.
Ewart
,
T. E.
,
Macaskill
,
C.
, and
Uscinski
,
B. J.
(
1983
). “
Intensity fluctuations. Part II: Comparison with the Cobb experiment
,”
J. Acoust. Soc. Am.
74
,
1484
1499
.
10.
Ewart
,
T. E.
, and
Reynolds
,
S. A.
(
1984
). “
The mid-ocean acoustic transmission experiment—MATE
,”
J. Acoust. Soc. Am.
75
,
785
802
.
12.
Flatté
,
S. M.
,
Dashen
,
R.
,
Munk
,
W. H.
,
Watson
,
K. M.
, and
Zachariasen
,
F.
(
1979
).
Sound Transmission through a Fluctuating Ocean
(
Cambridge University Press
, Cambridge).
13.
Flatté
,
S. M.
(
1983
). “
Wave propagation through random media: Contributions from ocean acoustics
,”
Proc. IEEE
71
,
1267
1294
.
14.
Frankignoul
,
C.
, and
Joyce
,
T. M.
(
1979
). “
On the internal wave variability during the internal wave experiment (IWEX)
,”
J. Geophys. Res.
84
,
769
776
.
15.
Henyey
,
F.
, and
Macaskill
,
C.
(
1996
). “
Sound through the internal wave field
,” in
Stochastic Modelling in Physical Oceanography
, edited by
R. J.
Adler
,
P.
Müller
, and
B. L.
Rozovskii
(
Birkhäuser
, Boston), p.
141
184
.
16.
Levine
,
M. D.
, and
Irish
,
J. D.
(
1981
). “
A statistical description of temperature fine structure in the presence of internal waves
,”
J. Phys. Oceanogr.
11
,
676
691
.
17.
Levine
,
M. D.
,
Irish
,
J. D.
,
Ewart
,
T. E.
, and
Reynolds
,
S. A.
(
1986
). “
Simultaneous spatial and temporal measurements of the internal wave field during MATE
,”
J. Geophys. Res.
91
,
9709
9719
.
18.
Macaskill
,
C.
, and
Ewart
,
T. E.
(
1996
). “
Numerical solution of the fourth moment equation for acoustic intensity correlations and comparison with the mid-ocean acoustic transmission experiment
,”
J. Acoust. Soc. Am.
99
,
1419
1429
.
19.
Munk
,
W. H.
, and
Zachariasen
,
F.
(
1976
). “
Sound propagation through a fluctuating stratified ocean—theory and observation
,”
J. Acoust. Soc. Am.
59
,
818
838
.
20.
Reynolds
,
S. A.
,
Flatté
,
S. M.
,
Dashen
,
R.
,
Buehler
,
B.
, and
Maciejewski
,
P.
(
1985
). “
AFAR measurements of acoustic mutual coherence functions of time and frequency
,”
J. Acoust. Soc. Am.
77
,
1723
1731
.
21.
Rytov
,
S. M.
,
Kravtsov
,
Yu. A.
, and
Tatarskii
,
V. I.
(
1989
).
Principles of Statistical Radiophysics 4 Wave Propagation Through Random Media
(
Springer-Verlag
, Berlin).
22.
Shishov
,
V. I.
(
1968
). “
Theory of wave propagation in random media
,”
Izv. Vyssh. Uchebn. Zaved., Radiofiz.
11
,
866
875
.
23.
Tappert
,
F. D.
, and
Hardin
,
R. H.
(
1973
). “
A synopsis of the AESD workshop on acoustic modeling by non-ray tracing techniques
,” AESD Tech. Note TN 73-05.
24.
Uscinski
,
B. J.
(
1977
).
The Elements of Wave Propagation in Random Media
(
McGraw-Hill
, New York).
25.
van Kampen
,
N. G.
(
1974
). “
A cumulant expansion for stochastic linear differential equations. I
,”
Physica (Utrecht)
(Utrecht)
74
,
215
238
.
26.
van Kampen
,
N. G.
(
1992
).
Stochastic Processes in Physics and Chemistry
, 2nd ed. (
Elsevier
, Amsterdam), Chap. XVI.
You do not currently have access to this content.