A restricted-bandwidth form of the Kramers-Kronig dispersion relations is applied to in vitro measurements of ultrasonic attenuation and dispersion properties of trabecular bone specimens from bovine tibia. The Kramers-Kronig analysis utilizes only experimentally measured properties and avoids extrapolation of ultrasonic properties beyond the known bandwidth. Compensation for the portions of the Kramers-Kronig integrals over the unknown bandwidth is partially achieved by the method of subtractions, where a subtraction frequency acts as an adjustable parameter. Good agreement is found between experimentally measured and Kramers-Kronig reconstructed dispersions. The restricted-bandwidth approach improves upon other forms of the Kramers-Kronig relations and may provide further insight into how ultrasound interacts with trabecular bone.

1.
C. M.
Langton
,
S. B.
Palmer
, and
R. W.
Porter
, “
The measurement of broadband ultrasonic attenuation in cancellous bone
,”
Phys. Med. Biol.
30
,
98
99
(
1985
).
2.
C. C.
Gluer
,
C. Y.
Wu
,
M.
Jergas
,
S. A.
Goldstein
, and
H. K.
Genant
, “
Three quantitative ultrasound parameters reflect bone structure
,”
Calcif. Tissue Int.
55
,
46
52
(
1994
).
3.
P. H. F.
Nicholson
,
M. J.
Haddaway
, and
M. W. J.
Davie
, “
The dependence of ultrasonic properties on orientation in human vertebral bone
,”
Phys. Med. Biol.
39
,
1013
1024
(
1994
).
4.
S.
Han
,
J.
Rho
,
J.
Medige
, and
I.
Ziv
, “
Ultrasound velocity and broadband attenuation over a wide range of bone mineral density
,”
Osteoporosis Int.
6
,
291
296
(
1996
).
5.
P.
Droin
,
G.
Berger
, and
P.
Laugier
, “
Velocity dispersion of acoustic waves in cancellous bone
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
45
,
581
592
(
1998
).
6.
A.
Hosokawa
and
T.
Otani
, “
Acoustic anisotropy in bovine cancellous bone
,”
J. Acoust. Soc. Am.
103
,
2718
2722
(
1998
).
7.
K. A.
Wear
and
B. S.
Garra
, “
Assessment of bone density using ultrasonic backscatter
,”
Ultrasound Med. Biol.
24
,
689
695
(
1998
).
8.
B. K.
Hoffmeister
,
S. A.
Whitten
, and
J. Y.
Rho
, “
Low-megahertz ultrasonic properties of bovine cancellous bone
,”
Bone (N.Y.)
26
,
635
642
(
2000
).
9.
K. A.
Wear
and
D. W.
Armstrong
, “
Relationships among calcaneal backscatter, attenuation, sound speed, hip bone mineral density, and age in normal adult women
,”
J. Acoust. Soc. Am.
110
,
573
578
(
2001
).
10.
S.
Chaffai
,
F.
Peyrin
,
S.
Nuzzo
,
R.
Porcher
,
G.
Berger
, and
P.
Laugier
, “
Ultrasonic characterization of human cancellous bone using transmission and backscatter measurements: Relationships to density and microstructure
,”
Bone (N.Y.)
30
,
229
237
(
2002
).
11.
C.
Roux
,
V.
Roberjot
,
R.
Porcher
,
S.
Kolta
,
M.
Dougados
, and
P.
Laugier
, “
Ultrasonic backscatter and transmission parameters at the os calcis in postmenopausal osteoporosis
,”
J. Bone Miner. Res.
16
,
1353
1362
(
2001
).
12.
B. K.
Hoffmeister
,
S. R.
Smith
,
S. M.
Handley
, and
J. Y.
Rho
, “
Anisotropy of Young's modulus of human tibial cortical bone
,”
Med. Biol. Eng. Comput.
38
,
333
338
(
2000
).
13.
K. A.
Wear
, “
The effects of frequency-dependent attenuation and dispersion on sound speed measurements: Applications in human trabecular bone
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
47
,
265
273
(
2000
).
14.
P. H. F.
Nicholson
,
G.
Lowet
,
C. M.
Langton
,
J.
Dequeker
, and
G.
van der Perre
, “
A comparison of time-domain and frequency-domain approaches to ultrasonic velocity measurement in trabecular bone
,”
Phys. Med. Biol.
41
,
2421
2435
(
1996
).
15.
K. A.
Wear
, “
Measurements of phase velocity and group velocity in human calcaneus
,”
Ultrasound Med. Biol.
26
,
641
646
(
2000
).
16.
M.
O’Donnell
,
E. T.
Jaynes
, and
J. G.
Miller
, “
General relationships between ultrasonic attenuation and dispersion
,”
J. Acoust. Soc. Am.
63
,
1935
1937
(
1978
).
17.
M.
O’Donnell
,
E. T.
Jaynes
, and
J. G.
Miller
, “
Kramers-Kronig relationship between ultrasonic attenuation and phase velocity
,”
J. Acoust. Soc. Am.
69
,
696
701
(
1981
).
18.
K. R.
Waters
,
M. S.
Hughes
,
J.
Mobley
,
G. H.
Brandenburger
, and
J. G.
Miller
, “
On the applicability of Kramers-Kronig relations for media with attenuation obeying a frequency power law
,”
J. Acoust. Soc. Am.
108
,
556
563
(
2000
).
19.
T. L.
Szabo
, “
Causal theories and data for acoustic attenuation obeying a frequency power law
,”
J. Acoust. Soc. Am.
97
,
14
24
(
1995
).
20.
K. R.
Waters
,
M. S.
Hughes
,
J.
Mobley
, and
J. G.
Miller
, “
Differential forms of the Kramers-Kronig dispersion relations
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
50
,
68
76
(
2003
).
21.
F.
Dunn
and
S. A.
Goss
, “
Definition of Terms and Measurements of Acoustical Quantities
,” in
Tissue Characterization With Ultrasound. Volume I. Methods
, edited by
J. F.
Greenleaf
(
CRC Press
, Boca Raton,
1986
), Chap. 1, pp.
1
13
.
22.
K. A.
Wear
, “
Frequency dependence of ultrasonic backscatter from human trabecular bone: Theory and experiment
,”
J. Acoust. Soc. Am.
106
,
3659
3664
(
1999
).
23.
J. J.
Faran
, “
Sound scattering by solid cylinders and spheres
,”
J. Acoust. Soc. Am.
23
,
405
418
(
1951
).
24.
H. K.
Genant
,
C.
Gordon
,
Y.
Jiang
,
T. F.
Lang
,
T. M.
Link
, and
S.
Majumdar
, “
Advanced imaging of bone macro and micro structure
,”
Bone (N.Y.)
25
,
149
152
(
1999
).
25.
S.
Chaffai
,
V.
Roberjot
,
F.
Peyrin
,
G.
Berger
, and
P.
Laugier
, “
Frequency dependence of ultrasonic backscattering in cancellous bone: Autocorrelation model and experimental results
,”
J. Acoust. Soc. Am.
108
,
2403
2411
(
2000
).
26.
J.
Mobley
,
K. R.
Waters
,
M. S.
Hughes
,
C. S.
Hall
,
J. N.
Marsh
,
G. H.
Brandenburger
, and
J. G.
Miller
, “
Kramers-Kronig relations in ultrasonics: Applications to finite-bandwidth data of encapsulated microbubbles
,”
J. Acoust. Soc. Am.
108
,
2091
2106
(
2000
).
27.
J.
Mobley
,
K. R.
Waters
,
M. S.
Hughes
,
C. S.
Hall
,
J. N.
Marsh
,
G. H.
Brandenburger
, and
J. G.
Miller
, “
Erratum: ‘Kramers-Kronig relations applied to finite bandwidth data from suspensions of encapsulated microbubbles’ [J. Acoust. Soc. Am. 108, 2091–2106 (2000)]
,”
J. Acoust. Soc. Am.
112
,
760
761
(
2002
).
28.
H. M.
Nussenzveig
,
Causality and Dispersion Relations
, 1st ed. (
Academic
, New York,
1972
), pp.
28
33
.
29.
J.
Mobley
,
K. R.
Waters
, and
J. G.
Miller
, “
Causal determination of acoustic group velocity and frequency derivative of attenuation with finite-bandwidth Kramers-Kronig relations
,”
Phys. Rev. E
72
,
016604
(
2005
).
30.
J.
Mobley
,
K. R.
Waters
, and
J. G.
Miller
, “
Finite bandwidth effects on the causal prediction of ultrasonic attenuation of the power-law form
,”
J. Acoust. Soc. Am.
114
,
2782
2790
(
2003
).
31.
B. K.
Hoffmeister
,
J. A.
Auwarter
, and
J. Y.
Rho
, “
Effect of marrow on the high frequency ultrasonic properties of cancellous bone
,”
Phys. Med. Biol.
47
,
3419
3429
(
2002
).
32.
W.
Sachse
and
Y.-H.
Pao
, “
On the determination of phase and group velocities of dispersive waves in solids
,”
J. Appl. Phys.
49
,
4320
4327
(
1978
).
33.
M.
Greenspan
and
C. E.
Tschiegg
, “
Tables of the Speed of Sound in Water
,”
J. Acoust. Soc. Am.
31
,
75
76
(
1959
).
34.
H. M.
Nussenzveig
,
Causality and Dispersion Relations
, 1st ed. (
Academic
, New York,
1972
), pp.
127
131
.
35.
K. R.
Waters
,
J.
Mobley
, and
J. G.
Miller
, “
Causality-imposed (Kramers-Kronig) relationships between attenuation and dispersion
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
52
,
822
833
(
2005
).
36.
M. A.
Biot
, “
The theory of propagation of elastic waves in fluid-saturated porous solid. I. Low frequency range
,”
J. Acoust. Soc. Am.
28
,
168
178
(
1956
).
37.
M. A.
Biot
, “
The theory of propagation of elastic waves in fluid-saturated porous solid. II. Higher frequency range
,”
J. Acoust. Soc. Am.
28
,
179
191
(
1956
).
38.
Z. E. A.
Fellah
,
J. Y.
Chapelon
,
S.
Berger
,
W.
Lauriks
, and
C.
Depollier
, “
Ultrasonic wave propagation in human cancellous bone: Application of Biot theory
,”
J. Acoust. Soc. Am.
116
,
61
73
(
2004
).
39.
K. R.
Waters
,
M. S.
Hughes
,
G. H.
Brandenburger
, and
J. G.
Miller
, “
On a time-domain representation of the Kramers-Kronig dispersion relations
,”
J. Acoust. Soc. Am.
108
,
2114
2119
(
2000
).
40.
T. L.
Szabo
, “
Time-domain wave equations for lossy media obeying a frequency power law
,”
J. Acoust. Soc. Am.
96
,
491
500
(
1994
).
You do not currently have access to this content.