We present a model applicable to ultrasound contrast agent bubbles that takes into account the physical properties of a lipid monolayer coating on a gas microbubble. Three parameters describe the properties of the shell: a buckling radius, the compressibility of the shell, and a break-up shell tension. The model presents an original non-linear behavior at large amplitude oscillations, termed compression-only, induced by the buckling of the lipid monolayer. This prediction is validated by experimental recordings with the high-speed camera Brandaris 128, operated at several millions of frames per second. The effect of aging, or the resultant of repeated acoustic pressure pulses on bubbles, is predicted by the model. It corrects a flaw in the shell elasticity term previously used in the dynamical equation for coated bubbles. The break-up is modeled by a critical shell tension above which gas is directly exposed to water.

1.
J. M.
Crane
and
S. B.
Hall
, “
Rapid compression transforms interfacial monolayers of pulmonary surfactant
,”
Biophys. J.
80
,
1863
(
2001
).
2.
A. L.
Klibanov
, “
Ultrasound contrast agents: Development of the field and current status
,”
Top. Curr. Chem.
222
,
73
(
2002
).
3.
S.
Lee
,
D. H.
Kim
, and
D.
Needham
, “
Equilibrium and dynamic interfacial tension measurements at microscopic interfaces using a micropipet technique. 2: Dynamics of phospholipid monolayer formation and equilibrium tensions at the water-air interface
,”
Langmuir
17
,
5544
(
2001
).
4.
J. M.
Crane
,
G.
Putz
, and
S. B.
Hall
, “
Persistence of phase coexistence in disaturated phosphatidylcholine monolayers at high surface pressures
,”
Biophys. J.
77
,
3134
(
1999
).
5.
M.
Schneider
,
M.
Arditi
,
M.-B.
Barrau
,
J.
Brochot
,
A.
Broillet
,
R.
Ventrone
, and
F.
Yan
, “
BR1: A new ultrasonic contrast agent based on sulfur hexafluoride-filled microbubbles
,”
Invest. Radiol.
30
,
451
(
1995
).
6.
F.
Pétriat
,
E.
Roux
,
J.-C.
Leroux
, and
S.
Giasson
, “
Study of molecular interactions between a phospholipidic layer and a pH-sensitive polymer using the langmuir balance technique
,”
Langmuir
20
,
1393
(
2004
).
7.
M. I.
Sández
,
A.
Suárez
, and
A.
Gil
, “
Surface pressure-area isotherms and fluorescent behavior of phospholipids containing labeled pyrene
,”
J. Colloid Interface Sci.
250
,
128
(
2002
).
8.
M. A.
Borden
and
M. L.
Longo
, “
Dissolution behavior of lipid monolayer-coated, air-filled microbubbles: Effect of lipid hydrophobic chain length
,”
Langmuir
18
,
9225
(
2002
).
9.
A.
Saint-Jalmes
,
F.
Graner
,
F.
Gallet
, and
B.
Houchmandzadeh
, “
Buckling of a bidimensional solid
,”
Europhys. Lett.
28
,
565
(
1994
).
10.
A.
Saint-Jalmes
and
F.
Gallet
, “
Buckling in a solid langmuir monolayer: Light scattering measurements and elastic model
,”
Eur. Phys. J. B
2
,
489
(
1998
).
11.
D. H.
Kim
,
M. J.
Costello
,
P. B.
Duncan
, and
D.
Needham
, “
Mechanical properties and microstructure of polycrystalline phospholipid monolayer shells: Novel solid microparticles
,”
Langmuir
19
,
8455
(
2003
).
12.
P. B.
Duncan
and
D.
Needham
, “
Test of the epstein-plesset model for gas microparticle dissolution in aqueous media: Effect of surface tension and gas undersaturation in solution
,”
Langmuir
20
,
2567
(
2004
).
13.
F.
Graner
,
S.
Perez-Oyarzun
,
A.
Saint-Jalmes
,
C.
Flament
, and
F.
Gallet
, “
Phospholipidic monolayers on formamide
,”
J. Phys. II
5
,
313
(
1995
).
14.
G.
Gaines
and
L.
George
,
Insoluble Monolayers at Liquid-Gas Interfaces
(
Interscience
, New York,
1966
).
15.
K. E.
Morgan
,
J. S.
Allen
,
P. A.
Dayton
,
J. E.
Chomas
,
A. L.
Klibanov
, and
K. W.
Ferrara
, “
Experimental and theoretical evaluation of microbubble behaviour: Effect of transmitted phase and bubble size
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
47
,
1494
(
2000
).
16.
D.
Chatterjee
and
K.
Sarkar
, “
A newtonian rheological model for the interface of microbubble contrast agents
,”
Ultrasound Med. Biol.
29
,
1749
(
2003
).
17.
R. E.
Glazman
, “
Effects of an adsorbed film on gas bubble radial oscillations
,”
J. Acoust. Soc. Am.
74
,
980
(
1983
).
18.
P.-G.
de Gennes
,
F.
Brochard-Wyart
, and
D.
Quéré
,
Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves
(
Springer
, New York,
2004
).
19.
M. P.
Brenner
,
S.
Hilgenfeldt
, and
D.
Lohse
, “
Single-bubble sonoluminescence
,”
Rev. Mod. Phys.
74
,
425
(
2002
).
20.
A.
Properetti
, “
Bubble phenomena in sound fields: Part one
,”
Ultrasonics
22
,
69
(
1984
).
21.
N.
de Jong
,
R.
Cornet
, and
C.
Lancée
, “
Higher harmonics of vibration gas-filled microspheres. part one: simulations
,”
Ultrasonics
32
,
447
(
1994
).
22.
C. T.
Chin
,
C.
Lancée
,
J.
Borsboom
,
F.
Mastik
,
M.
Frijlink
,
N.
de Jong
,
M.
Versluis
, and
D.
Lohse
, “
Brandaris 128: A digital 25 million frames per second camera with 128 highly sensitive frames
,”
Rev. Sci. Instrum.
74
,
5026
(
2003
).
23.
M.
Schneider
,
A.
Broillet
,
P.
Bussat
,
N.
Giessinger
,
J.
Puginier
,
R.
Ventrone
, and
F.
Yan
, “
Grayscale liver enhancement in VX2 tumor-bearing rabbits using BR14, a new ultrasonographic contrast agent
,”
Invest. Radiol.
32
,
410
(
1997
).
24.
J. M.
Gorce
,
M.
Arditi
, and
M.
Schneider
, “
Influence of bubble size distribution on the echogenicity of ultrasound contrast agents: A study of Sonovue
,”
Invest. Radiol.
35
,
661
(
2000
).
25.
S.
Hilgenfeldt
,
D.
Lohse
, and
M. P.
Brenner
, “
Phase diagrams for sonoluminescing bubbles
,”
Phys. Fluids
8
,
2808
(
1996
).
26.
M.
Fyrillas
and
A. J.
Szeri
, “
Dissolution or growth of soluble spherical oscillating bubbles
,”
J. Fluid Mech.
277
,
381
(
1994
).
27.
C. C.
Church
, “
The effects of an elastic solid surface layer on the radial pulsations of gas bubbles
,”
J. Acoust. Soc. Am.
97
,
1510
(
1995
).
28.
D.
Boal
,
Mechanics of the cell
(
Cambridge University Press
, Cambridge,
2002
).
You do not currently have access to this content.