In the present study a two-dimensional axisymmetric numerical model is developed for supercritical parametric phase conjugation of ultrasound in a solid active element of cylindrical shape and finite length. The pseudospectral time domain algorithm (PSTD) is used owing to its efficiency to model large-scale problems. PSTD solves elastic wave equation in time-dependent heterogeneous isotropic and axisymmetric anisotropic solids using FFTs for high order approximation of the spatial differential operator on staggered grid, and a fourth-order Adams–Bashforth time integrator. In order to truncate the computational domain absorbing boundary conditions are introduced with complex frequency shifted perfectly matched layers. This procedure is highly effective at absorbing signals of long time-signature. The free surface of the active ceramic rod is introduced through the method of images. A systematic study of the influence of lateral limitations of the active medium on parametric wave phase conjugation of sound is made. It is shown that retro-focusing of the incident pulse takes place even in the case of mode conversions inside the active zone. Nevertheless, amplitude and form of the obtained conjugate pulse depend on the simulated configuration. Numerical simulation correctly describes the parametric amplification and retro-focusing of ultrasound observed in experiments.

1.
A. P.
Brysev
,
L. M.
Krutyansky
, and
V. L.
Preobrazhensky
, “
Wave phase conjugation of ultrasound beams
,”
Usp. Fiz. Nauk
168
,
877
890
(
1998
).
2.
A. P.
Brysev
,
L. M.
Krutyansky
, and
V. L.
Preobrazhensky
, “
Modern problems of the parametric ultrasonic wave phase conjugation
,”
Phys. Vib.
9
,
52
70
(
2001
).
3.
D. L.
Bobroff
and
H. A.
Haus
, “
Impulse response of active coupled wave systems
,”
J. Appl. Phys.
38
,
390
403
(
1967
).
4.
R. B.
Thompson
and
C. F.
Quate
, “
Nonlinear interaction of microwave electric fields and sound in LiNbO3
,”
J. Appl. Phys.
42
,
907
919
(
1971
).
5.
V. L.
Preobrazhensky
, “
Overthreshold nonlinearity of parametric sound wave phase conjugation in solids
,”
Jpn. J. Appl. Phys., Part 1
32
,
2247
2251
(
1993
).
6.
P.
Pernod
and
V. L.
Preobrazhensky
, “
Parametric phase conjugation of a wide-band acoustic pulse in supercritical mode
,”
Appl. Phys. Lett.
76
,
387
389
(
2000
).
7.
A. P.
Brysev
,
F. V.
Bunkin
,
D. V.
Vlasov
,
L. M.
Krutyanskii
,
V. L.
Preobrazhenskii
, and
A. D.
Stakhovskii
, “
Regenerative amplification of acoustic waves with phase conjugation in a ferrite
,”
Sov. Phys. Acoust.
34
,
567
569
(
1988
).
8.
S. Ben
Khelil
,
A.
Merlen
,
V. L.
Preobrazhensky
, and
P.
Pernod
, “
Numerical simulation of acoustic conjugation in active media
,”
J. Acoust. Soc. Am.
109
,
75
83
(
2001
).
9.
A.
Merlen
,
V. L.
Preobrazhensky
, and
P.
Pernod
, “
Supercritical parametric phase conjugation of ultrasound. Numerical simulation of nonlinear and non-stationary mode
,”
J. Acoust. Soc. Am.
112
,
2656
2665
(
2002
).
10.
T.
Özdenvar
and
G. A.
McMechan
, “
Causes and reduction of numerical artifacts in pseudospectral wavefield extrapolation
,”
Geophys. J. Int.
126
,
819
828
(
1996
).
11.
J.
Dellinger
and
F.
Muir
, “
Axisymmetric anisotropy I: Kinematics
,”
SEP Report
42
,
1
24
(
1985
).
12.
M.
Ghrist
,
B.
Fornberg
, and
T. A.
Driscoll
, “
Staggered time integrators for wave equations
,”
SIAM (Soc. Ind. Appl. Math.) J. Numer. Anal.
38
,
718
741
(
2000
).
13.
J. A.
Roden
and
S. D.
Gedney
, “
Convolution PML (CPML): An efficient FDTD implementation of the CFS-PML for arbitrary media
,”
Microwave Opt. Technol. Lett.
27
,
334
339
(
2000
).
14.
M.
Kuzuoglu
and
R.
Mittra
, “
Frequency dependence of the constitutive parameters of causal perfectly matched anisotropic absorbers
,”
IEEE Microw. Guid. Wave Lett.
6
,
447
449
(
1996
).
15.
W. C.
Chew
,
J. M.
Jin
, and
E.
Michelssen
, “
Complex coordinate system as a generalized absorbing boundary condition
,”
Microwave Opt. Technol. Lett.
15
,
363
369
(
1997
).
16.
F. L.
Teixeira
and
W. C.
Chew
, “
PML-FDTD in cylindrical and spherical grids
,”
IEEE Microw. Guid. Wave Lett.
7
,
285
287
(
1997
).
17.
Q. H.
Liu
, “
Perfectly matched layers for elastic waves in cylindrical and spherical coordinates
,”
J. Acoust. Soc. Am.
105
,
2075
2084
(
1999
).
18.
J. P.
Berenger
, “
A perfectly matched layer for the absorption of electromagnetic waves
,”
J. Comput. Phys.
114
,
195
200
(
1994
).
19.
W. C.
Chew
and
Q. H.
Liu
, “
Perfectly matched layers for elastodynamics: A new absorbing boundary condition
,”
J. Comput. Acoust.
4
,
72
79
(
1996
).
20.
A. R.
Levander
, “
Fourth-order finite-difference P-SV seismograms
,”
Geophysics
53
,
1425
1436
(
1988
).
21.
J. O.A.
Robertsson
, “
A numerical free-surface condition for elastic/viscoelastic finite-difference modeling in the presence of topography
,”
Geophysics
61
,
1921
1934
(
1996
).
22.
Z. Q.
Zeng
and
Q. H.
Liu
, “
A multidomain PSTD method for 3D elastic wave equations
,”
Bull. Seismol. Soc. Am.
94
,
1002
1015
(
2004
).
23.
A. P.
Brysev
,
P.
Pernod
, and
V. L.
Preobrazhensky
, “
Magneto-acoustic ceramics for parametric sound wave phase conjugators
,”
Ultrasonics
38
,
834
837
(
2000
).
24.
F.
Schubert
,
A.
Peiffer
,
B.
Köhler
, and
T.
Sanderson
, “
The elastodynamic finite integration technique for waves in cylindrical geometries
,”
J. Acoust. Soc. Am.
104
,
2604
2614
(
1998
).
You do not currently have access to this content.