This study examined the effect of noise on the identification of four synthetic speech continua (/rɑ/-/lɑ/, /wɑ/-/jɑ/, /i/-/u/, and say-stay) by adults with cochlea implants (CIs) and adults with normal-hearing (NH) sensitivity in quiet and noise. Significant group-by-SNR interactions were found for endpoint identification accuracy for all continua except /i/-/u/. The CI listeners showed the least NH-like identification functions for the /rɑ/-/lɑ/ and /wɑ/-/jɑ/ continua. In a second experiment, NH adults identified four- and eight-band cochlear implant stimulations of the four continua, to examine whether group differences in frequency selectivity could account for the group differences in the first experiment. Number of bands and SNR interacted significantly for /rɑ/-/lɑ/, /wɑ/-/jɑ/, and say-stay endpoint identification; strongest effects were found for the /rɑ/-/lɑ/ and say-stay continua. Results suggest that the speech features that are most vulnerable to misperception in noise by listeners with CIs are those whose acoustic cues are rapidly changing spectral patterns, like the formant transitions in the /wɑ/-/jɑ/ and /rɑ/-/lɑ/ continua. However, the group differences in the first experiment cannot be wholly attributable to frequency selectivity differences, as the number of bands in the second experiment affected performance differently than suggested by group differences in the first experiment.

1.
Bock
,
K.
, and
Jones
,
L.
(
1968
).
The Measurement and Prediction of Judgment and Choice
(
Holden-Day
, San Francisco).
2.
Dorman
,
M. F.
,
Loizou
,
P. C.
,
Spahr
,
A. J.
, and
Maloff
,
E.
(
2002
). “
Factors that allow a high level of speech understanding by patients fit with cochlear implants
,”
Am. J. Audiol.
11
,
119
123
.
3.
Fox
,
R. A.
,
Wall
,
L.
, and
Gokcen
,
J.
(
1992
). “
Age-related differences in processing dynamic information to identify vowel quality
,”
J. Speech Hear. Res.
35
,
892
902
.
4.
Friesen
,
L. M.
,
Shannon
,
R. V.
,
Baskent
,
D.
, and
Wang
,
X.
(
2001
). “
Speech recognition in noise as a function of the number of spectral channels: Comparison of acoustic hearing and cochlear implants
,”
J. Acoust. Soc. Am.
110
,
1150
1163
.
5.
Fu
,
Q. J.
,
Shannon
,
R. V.
, and
Wang
,
X.
(
1998
). “
Effects of noise and spectral resolution on vowel and consonant recognition: acoustic and electric hearing
,”
J. Acoust. Soc. Am.
104
,
3586
3596
.
6.
Gantz
,
B. J.
,
Woodworth
,
G. G.
,
Abbas
,
P. J.
,
Knutson
,
J. F.
, and
Tyler
,
R. S.
(
1993
). “
Multivariate predictors of audiological success with multichannel cochlear implants
,”
Ann. Otol. Rhinol. Laryngol.
102
,
909
916
.
7.
Garnham
,
C.
,
O’Driscoll
,
M.
,
Ramsden
,
R.
, and
Saeed
,
S.
(
2002
). “
Speech understanding in noise with a Med-E1 COMBI 40+ cochlear implant using reduced channel sets
,”
Ear Hear.
23
,
540
552
.
8.
Hazan
,
V.
, and
Barret
,
S.
(
2000
). “
The development of phonemic categorization in children aged 6–12
,”
J. Phonetics
28
,
377
396
.
9.
Hazan
,
V.
, and
Rosen
,
S.
(
1991
). “
Individual variability in the perception of cues to place contrasts in initial stops
,”
Percept. Psychophys.
49
,
187
2000
.
10.
Hedrick
,
M. S.
, and
Carney
,
A. E.
(
1997
). “
Effect of relative amplitude and formant transitions on perception of place of articulation by adult listeners with cochlear implants
,”
J. Speech Lang. Hear. Res.
40
,
1445
1457
.
11.
Iverson
,
P.
(
2003
). “
Evaluating the function of phonetic perceptual phenomena within speech recognition: An examination of the perception of /d/-/t/ by adult cochlear implant users
,”
J. Acoust. Soc. Am.
113
,
1056
1064
.
12.
Klatt
,
D. H.
(
1980
). “
Software for a cascade/parallel formant synthesizer
,”
J. Acoust. Soc. Am.
67
,
971
995
.
13.
Klatt
,
D. H.
, and
Klatt
,
L. C.
(
1990
). “
Analysis, synthesis, and perception of voice quality variations among female and male talkers
,”
J. Acoust. Soc. Am.
87
,
820
857
.
14.
Loizou
,
P. C.
,
Dorman
,
M. F.
,
Tu
,
Z.
, and
Fitzke
,
J.
(
2000
). “
Recognition of sentences in noise by normal-hearing listeners using simulations of SPEAK-type cochlear implant signal processors
,”
Ann. Otol. Rhinol. Laryngol. Suppl.
185
,
67
68
.
15.
Munson
,
B.
,
Donaldson
,
G.
,
Allen
,
S.
,
Collison
,
E.
, and
Nelson
,
D.
(
2003
). “
Patterns of phoneme misperceptions by listeners with cochlear implants varying in overall speech perception ability
,”
J. Acoust. Soc. Am.
113
,
925
935
.
16.
Nabelek
,
A. K.
,
Ovchinnikov
,
A.
,
Czyzewski
,
Z.
, and
Crowley
,
H. J.
(
1996
). “
Cues for perception of synthetic and natural diphthongs in either noise or reverberation
,”
J. Acoust. Soc. Am.
99
,
1742
1753
.
17.
Nelson
,
P. B.
, and
Jin
,
S.-H.
(
2004
). “
Factors affecting speech understanding in gated interference: Cochlear implant users and normal-hearing listeners
,”
J. Acoust. Soc. Am.
115
,
2286
2294
.
18.
Nelson
,
P. B.
,
Jin
,
S.-H.
,
Carney
,
A. E.
, and
Nelson
,
D. A.
(
2003
). “
Understanding speech in modulated interference: Cochlear implant users and normal-hearing listeners
,”
J. Acoust. Soc. Am.
113
,
961
968
.
19.
Qin
,
M. K.
, and
Oxenham
,
A. J.
(
2003
). “
Effects of simulated cochlear-implant processing on speech reception in fluctuating maskers
,”
J. Acoust. Soc. Am.
114
,
446
454
.
20.
Shannon
,
R. V.
(
2002
). “
The relative importance of amplitude, temporal and spectral cues for cochlear implant design
,”
Am. J. Audiol.
11
,
124
127
.
21.
Shannon
,
R. V.
,
Zeng
,
F.-G.
,
Kamath
,
V.
,
Wygonski
,
J.
, and
Ekelid
,
M.
(
1995
). “
Speech perception without spectral cues
,”
Science
270
,
303
304
.
22.
Syntrillium, Inc.
(
1996
).
Cool Edit (Version 96) [Computer Program]
, Phoenix, AZ.
23.
Wojtczak
,
M.
,
Donaldson
,
G. S.
, and
Viemiester
,
N.
(
2003
). “
Intensity discrimination and increment detection in cochlear implant users
,”
J. Acoust. Soc. Am.
114
,
396
407
.
You do not currently have access to this content.