The influence of the meteorological variability on the characteristics of the primary sonic boom emerging from an aircraft in cruising flight is investigated. The sonic-boom propagation is calculated by means of an advanced ray-tracing algorithm which takes meteorological influences into account. Real meteorological situations are considered based on a full 10-year data set in 12- and/or 24-h resolution. Three different climate regions are studied: a mid-latitude coastal sea region, a tropical coastal sea area, and a subpolar land region. Frequency distributions of sonic-boom characteristics such as wave amplitude, rise time, and carpet width are shown for each area, all seasons, and opposing flight directions. It turns out that while variability is low at the ground track, it is high laterally for carpet width or boom amplitude at the outer carpet edges. A correlation analysis is applied which shows specific relationships between meteorological profile parameters and acoustical response. In addition, a meteorological classification is introduced and tested.

1.
Bass
,
H. E.
,
Sutherland
,
L. C.
,
Piercy
,
J.
, and
Evans
,
L.
(
1984
). “
Absorption of sound by the atmosphere
,” in
Physical Acoustics
, edited by
W. P.
Mason
and
R. N.
Thurston
(
Academic
, Orlando) Vol.
XVII
, pp.
145
232
.
2.
Blokhintzev
,
D. I.
(
1946
). “
The propagation of sound in an inhomogeneous and moving medium I
,”
J. Acoust. Soc. Am.
18
,
322
328
.
3.
Blumrich
,
R.
,
Coulouvrat
,
F.
, and
Heimann
,
D.
(
2005
). “
Variability of Focused Sonic Booms from Accelerating Supersonic Aircraft in Consideration of Meteorological Effects
,”
J. Acoust. Soc. Am.
118
,
676
686
.
4.
Candel
,
S.
(
1977
). “
Numerical solution of conservation equation arising in linear wave theory: application to aeroacoustics
,”
J. Fluid Mech.
83
,
465
493
.
5.
Cleveland
,
R. O.
(
1995
). “
Propagation of sonic booms through a real, stratified atmosphere
,” Ph.D. dissertation,
The University of Texas
at Austin.
6.
Cleveland
,
R. O.
,
Chambers
,
J. P.
,
Bass
,
H. E.
,
Raspet
,
R.
,
Blackstock
,
D. T.
, and
Hamilton
,
M. F.
(
1996
). “
Comparison of computer codes for the propagation of sonic boom waveforms through isothermal atmospheres
,”
J. Acoust. Soc. Am.
100
,
3017
3027
.
7.
Coulouvrat
,
F.
(
2002
). “
Sonic boom in the shadow zone: A geometrical theory of diffraction
,”
J. Acoust. Soc. Am.
111
,
499
508
.
8.
Coulouvrat
,
F.
, and
Auger
,
Th.
(
1996
). “
Influence of molecular relaxation on the rise time of sonic booms
,”
7th Int. Symp. Long Range Sound Propagation
, Lyon, 25–26 July 1996, Ecole Centrale de Lyon, Actes du Symposium, pp.
177
191
.
9.
Dancer
,
A.
, and
Naz
,
P.
(
2004
). “
Sonic boom: ISL studies from the 60’s to the 70’s
,” in
Proceedings of 7ème Congrès Français d’Acoustique/30. Deutsche Jahrestagung für Akustik DAGA
, Strasbourg, France, 22–25 March 2004, pp.
1067
1068
.
10.
Esclangon
,
E.
(
1925
).
L’acoustique des canons et des projectiles
(
Imprimerie Nationale
, Paris) (in French).
11.
Gibson
,
R.
,
Kallberg
,
P.
,
Uppala
,
S.
,
Hernandez
,
A.
,
Nomura
,
A.
, and
Serrano
,
E.
(
1997
). ERA description,
ECMWF ReAnalysis Project Report Series 1
. Available from ECMWF, Shinfield Park, Reading, Berkshire RG2 9AX, U.K.
12.
Guiraud
,
J.-P.
(
1965
). “
Acoustique géométrique, bruit balistique des avions supersoniques et focalisation
,”
J. Mec.
4
,
215
267
(in French).
13.
Haglund
,
G. T.
, and
Kane
,
J.
(
1974
). “
Flight test measurements and analysis of sonic boom phenomena near the shock wave extremity
,”
AIAA Pap.
74
6
.
14.
Hartigan
,
J. A.
(
1975
).
Clustering Algorithms
(
Wiley
, New York).
15.
Hayes
,
W. D.
,
Haefeli
,
R. C.
, and
Kulsrud
,
H. E.
(
1969
). “
Sonic boom propagation in a stratified atmosphere with computer programme
,” NASA CR–1299.
16.
Heimann
,
D.
(
2001
). “
Effects of long-term atmospheric variability on the width of a sonic-boom carpet produced by high-flying supersonic aircraft
,”
ARLO
2
,
73
78
.
17.
Hodgson
,
J. P.
(
1973
). “
Vibrational relaxation effects in weak shock waves in air and the structure of sonic bangs
,”
J. Fluid Mech.
58
,
187
196
.
18.
Hubbard
,
H. H.
,
Maglieri
,
D. J.
, and
Huckel
,
V.
(
1971
). “
Variability of sonic boom signatures with emphasis on the extremities of the ground exposure patterns
,” Third Conference on Sonic Boom Research, NASA SP–255, pp.
351
359
.
19.
ICAO
(
1993
). Manual of the ICAO Standard Atmosphere (extended to 80kilometres), Doc 7488/3rd ed.
20.
Le Pichon
,
A.
,
Garcés
,
M.
,
Blanc
,
E.
,
Barthélémy
,
M.
, and
Drob
,
D. P.
(
2002
). “
Acoustic propagation and atmosphere characteristics derived from infrasonic waves generated by the Concorde
,”
J. Acoust. Soc. Am.
111
,
629
641
.
21.
Lundberg
,
W. R.
(
1994
). “
Seasonal sonic boom propagation prediction
,” Armstrong Laboratory, AL/OE-TR-1994-0132.
22.
Maglieri
,
D. J.
, and
Plotkin
,
K. J.
(
1995
). “
Sonic boom
,” in
Aeroacoustics of Flight Vehicles
, edited by
H. H.
Hubbard
, (
Acoustical Society of America
, Woodbury, NY), Vol.
1
, pp.
519
561
.
23.
McCurdy
,
D. A.
,
Brown
,
S. A.
, and
Hilliard
,
R. D.
(
2004
). “
Subjective response of people to simulated sonic booms in their homes
,”
J. Acoust. Soc. Am.
116
,
1573
1584
.
24.
Neter
,
J.
,
Wasserman
,
W.
, and
Whitmore
,
G. A.
(
1988
).
Applied Statistics
, 3rd ed. (
Allyn and Bacon
, Boston).
25.
Parmentier
,
G.
,
Mathieu
,
G.
,
Schaffar
,
M.
, and
Johe
,
Ch.
(
1973
). “
Bang sonique de Concorde: enregistrement hors trace des variations de pression au sol. Centre d’Essais des Landes, 13–15 June 1973
,” Institut Franco-Allemand de Recherches de Saint-Louis, Rapport Technique RT19/73.
26.
Pierce
,
A. D.
(
1989
).
Acoustics, an Introduction to its Physical Principles and Applications
(
Acoustical Society of America
, New York) (1st ed. in
1981
).
27.
Pierce
,
A. D.
, and
Kang
,
J.
(
1990
). “
Molecular relaxation effects on sonic boom waveforms
,” in
Frontiers of Nonlinear Acoustics
,
Proceedings of the 12th Int. Symp. Nonlinear Acoust.
, edited by
M. F.
Hamilton
and
D. T.
Blackstock
(
Elsevier
, London), pp.
165
170
.
28.
Plotkin
,
K. J.
(
2002
). “
State of the art of sonic boom modelling
,”
J. Acoust. Soc. Am.
111
,
530
536
.
29.
Plotkin
,
K. J.
, and
Page
,
J. A.
(
2002
). “
Extrapolation of sonic boom signatures from CFD solutions
,”
AIAA Pap.
2002
0922
.
30.
Shepherd
,
K. P.
, and
Sullivan
,
B. M.
(
1991
). “
A loudness calculation procedure applied to shaped sonic booms
,” NASA Technical Paper TP–3134.
31.
Sutherland
,
L. C.
, and
Bass
,
H. E.
(
2004
). “
Atmospheric absorption in the atmosphere up to 160km
,”
J. Acoust. Soc. Am.
115
,
1012
1032
.
32.
Thomas
,
C. L.
(
1972
). “
Extrapolation of sonic boom pressure signatures by the waveform parameter method
,” NASA TN D-6832.
33.
Walkden
,
F.
(
1958
). “
The shock pattern of a wing-body combination, far from the flight path
,”
Aeronaut. Q.
IX
,
164
194
.
34.
Whitham
,
G. B.
(
1952
). “
The flow pattern of a supersonic projectile
,”
Commun. Pure Appl. Math.
5
,
301
348
.
35.
Whitham
,
G. B.
(
1956
). “
On the propagation of weak shock waves
,”
J. Fluid Mech.
1
,
290
318
.
36.
Whitham
,
G. B.
(
1974
).
Linear and Nonlinear waves
(
Wiley/Interscience
, New York).
37.
WMO
(
1957
). “
Meteorology—A three-dimensional science: Second session of the commission for aerology
,”
WMO Bull.
IV(4)
,
134
138
.
38.
Zängl
,
G.
, and
Hoinka
,
K. P.
(
2000
). “
The tropopause in the polar regions
,”
J. Clim.
14
,
3117
3139
.
You do not currently have access to this content.