Two-tone distortion was measured in the intracochlear pressure in the base of the gerbil cochlea, close to the sensory tissue, where the local motions and forces of the organ of Corti can be detected. The measurements probe both the underlying nonlinear process that generates two-tone distortion, and the filtering and spreading of the distortion products. Some of our findings are as follows: (1) The observations were consistent with previous observations of two-tone distortion in BM motion [J. Neurophysiol. 77, 2385–2399 (1997); J. Neurophysiol. 78, 261–270 (1997)]. (2) Frequency sweeps show distortion product tuning and phase-versus-frequency behavior that is similar, but not identical, to single tone tuning. (3) The decay of distortion products with distance from the basilar membrane confirms the feasibility that they could drive the stapes by a direct fluid route, as proposed by Ren [Nat. Neurosci. 7, 333–334 (2004)]. (4) The phases of the distortion products within a single family (the group of distortion products generated by a single primary pair) in some cases alternated between and 180° when referenced to the phases of the primaries. This behavior is predicted by a simple compressive nonlinearity.

1.
Avan
,
P.
,
Magnan
,
P.
,
Smurzynski
,
J.
,
Probst
,
R.
, and
Dancer
,
A.
(
1998
). “
Direct evidence of cubic difference tone propagation by intracochlear acoustic pressure measurements in the guinea-pig
,”
Eur. J. Neurosci.
10
,
1764
1770
.
2.
Avan
,
P.
,
Bonfils
,
P.
,
Gilain
,
L.
, and
Mom
,
T.
(
2003
). “
Physiopathological significance of distortion-product emissions at 2 f1−f2 produced by high-versus low-level stimuli
,”
J. Acoust. Soc. Am.
113
,
430
441
.
3.
Beranek, L. L. (1993). Acoustics (Acoustical Society of America, New York).
4.
Brown
,
A. M.
,
Harris
,
F. P.
, and
Beveridge
,
H. A.
(
1996
). “
Two sources of acoustic distortion products from the human cochlea
,”
J. Acoust. Soc. Am.
100
,
3260
3267
.
5.
Cooper, N. P. (2000). “Radial variation in the vibration of the cochlear partition,” in Recent Developments in Auditory Mechanics, edited by H. Wada, T. Takasaka, K. Ikeda, K. Ohyama, and T. Koike (World Scientific, Singapore), pp. 109–115.
6.
Cooper
,
N. P.
, and
Rhode
,
W. S.
(
1997
). “
Mechanical responses to two-tone DPs in the apical and basal turns of the mammalian cochlea
,”
J. Neurophysiol.
78
,
261
270
.
7.
Cooper, N. P., and Shera, C. A. (2004). “Backward-traveling waves in the cochlea?” Abstract #1008 from the Midwinter Meeting of the Association for Research in Otolaryngology.
8.
de Boer
,
E.
(
1984
). “
Auditory physics. Physical principles in hearing theory. II
,”
Phys. Rep.
105
,
141
226
.
9.
de Boer
,
E.
, and
Nuttall
,
A. L.
(
2000
). “
The mechanical waveform of the basilar membrane. III. Intensity effects
,”
J. Acoust. Soc. Am.
107
,
1497
1507
.
10.
Duifhis, H. (1989). “Power law nonlinearities: A review of some less familiar properties,” in Cochlear Mechanisms: Structure, Function and Models, edited by J. P. Wilson and D. T. Kemp (Plenum, New York), pp. 395–403.
11.
Engebretson
,
A. M.
, and
Eldredge
,
D. H.
(
1968
). “
Model for the nonlinear characteristics of cochlear potentials
,”
J. Acoust. Soc. Am.
44
,
548
554
.
12.
Fahey, P. F. (1989). “DP responses of saturating nonlinearities,” in Cochlear Mechanisms: Structure, Function and Models, edited by J. P. Wilson and D. T. Kemp (Plenum, New York), pp. 405–412.
13.
Fahey
,
P. F.
,
Stagner
,
B. B.
,
Lonsbury-Martin
,
B. L.
, and
Martin
,
G. K.
(
2000
). “
Nonlinear interactions that could explain DP interference response areas
,”
J. Acoust. Soc. Am.
108
,
1786
1802
.
14.
Geisler
,
C. D.
, and
Cai
,
Y.
(
1996
). “
Relationship between frequency-tuning and spatial-tuning curves in the mammalian cochlea
,”
J. Acoust. Soc. Am.
99
,
1550
1555
.
15.
Goldstein
,
J. L.
(
1967
). “
Auditory nonlinearity
,”
J. Acoust. Soc. Am.
41
,
676
689
.
16.
Gummer
,
A. W.
,
Johnstone
,
B. M.
, and
Armstrong
,
N. J.
(
1981
). “
Direct measurement of basilar membrane stiffness in the guinea pig
,”
J. Acoust. Soc. Am.
70
,
1298
1309
.
17.
Hu
,
A.
,
Cuomo
,
F. W.
, and
Zuckerwar
,
A. J.
(
1992
). “
Theoretical and experimental study of a fiber optic microphone
,”
J. Acoust. Soc. Am.
91
,
3049
3056
.
18.
Johnstone
,
J. R.
,
Alder
,
V. A.
,
Johnstone
,
B. M.
,
Robertson
,
D.
, and
Yates
,
D. K.
(
1979
). “
Cochlear action potential threshold and single unit thresholds
,”
J. Acoust. Soc. Am.
65
,
254
257
.
19.
Kemp
,
D. T.
(
1978
). “
Stimulated acoustic emissions from within the human auditory system
,”
J. Acoust. Soc. Am.
64
,
1386
1391
.
20.
Kemp, D. T., and Brown, A. M. (1983). “An integrated view of cochlear mechanical nonlinearities observable from the ear canal,” in Mechanics of Hearing, edited by E. de Boer and M. A. Viergever (Martinus Nijhoff, Delft), pp. 75–82.
21.
Kiang
,
N. Y. S.
,
Liberman
,
M. C.
,
Sewell
,
W. F.
, and
Guinan
,
J. J.
(
1986
). “
Single unit clues to cochlear mechanisms
,”
Hear. Res.
22
,
171
182
.
22.
Kim
,
D. O.
,
Molnar
,
C. E.
, and
Mattews
,
J. W.
(
1980
). “
Cochlear mechanics: Nonlinear behavior in two-tone responses as reflected in cochlear-nerve-fiber responses and in ear-canal sound pressure
,”
J. Acoust. Soc. Am.
67
,
1704
1721
.
23.
Kolston
,
P. J.
(
2000
). “
The importance of phase data and model dimensionality to cochlear mechanics.
Hear. Res.
145
(
1-2
),
25
36
.
24.
Kros, C. J., Lennan, G. W. T., and Richardson, G. P. (1995). “Transducer currents and bundle movements in outer hair cells of neonatal mice,” in Active Hearing, edited by A. Flock, D. Ottoson, and M. Ulfendahl (Elsevier Science, Amsterdam), pp. 113–125.
25.
Lukashkin
,
A. N.
, and
Russell
,
I. J.
(
1998
). “
A descriptive model of the receptor potential nonlinearities generated by the hair cell mechanoelectrical transducer
,”
J. Acoust. Soc. Am.
103
,
973
980
.
26.
Lukashkin
,
A. N.
, and
Russell
,
I. J.
(
1999
). “
Analysis of the f2−f1 and 2 f1−f2 distortion components generated by the hair cell mechanoelectrical transducer: Dependence on the amplitudes of the primaries and feedback gain
,”
J. Acoust. Soc. Am.
106
,
2661
2668
.
27.
Lukashkin
,
A. N.
,
Lukashkina
,
V. A.
, and
Russell
,
I. J.
(
2002
). “
One source for DP otoacoustic emissions generated by low- and high-level primaries
,”
J. Acoust. Soc. Am.
111
,
2740
2748
.
28.
Magnan
,
P.
,
Avan
,
P.
,
Dancer
,
A.
,
Smurzynski
,
J.
, and
Probst
,
R.
(
1997
). “
Reverse middle-ear transfer function in the guinea pig measured with cubic difference tones
,”
Hear. Res.
107
,
41
45
.
29.
Mauermann
,
M.
, and
Kollmeier
,
B.
(
2004
). “
Distortion product otoacoustic emission (DPOAE) input/output functions and the influence of the second DPOAE source
,”
J. Acoust. Soc. Am.
116
,
2199
2212
.
30.
Mills
,
D. M.
(
2002
). “
Interpretation of standard distortion product otoacoustic emission measurements in light of the complete parametric response
,”
J. Acoust. Soc. Am.
112
,
1545
1560
.
31.
Muller
,
M.
(
1996
). “
The cochlear place-frequency map of the adult and developing mongolian gerbil
,”
Hear. Res.
94
,
148
156
.
32.
Naryanan, S. S., Recio, A., and Ruggero, M. A. (1998). “Cubic DPs at the basilar membrane and in the ear canal of chinchilla,” Abstract #181 from the Midwinter Meeting of the Association for Research in Otolaryngology.
33.
Nilsen
,
K. E.
, and
Russell
,
I. J.
(
1999
). “
Timing of cochlear feedback: spatial and temporal representation of a tone across the basilar membrane
,”
Nat. Neurosci.
2
,
642
648
.
34.
Nuttall
,
A. L.
,
Guo
,
M.
, and
Ren
,
T.
(
1999
). “
The radial pattern of basilar membrane motion evoked by electrical stimulation of the cochlea
,”
Hear. Res.
131
,
39
46
.
35.
Olson
,
E. S.
(
1998
). “
Observing middle and inner ear mechanics with novel intracochlear pressure sensors
,”
J. Acoust. Soc. Am.
103
,
3445
3463
.
36.
Olson
,
E. S.
(
1999
). “
Direct measurement of intracochlear pressure waves
,”
Nature (London)
402
,
526
529
.
37.
Olson
,
E. S.
(
2001
). “
Intracochlear pressure measurements related to cochlear tuning
,”
J. Acoust. Soc. Am.
110
,
349
367
.
38.
Olson
,
E. S.
(
2004
). “
Harmonic distortion in intracochlear pressure and its analysis to explore the cochlear amplifier
,”
J. Acoust. Soc. Am.
115
,
1230
1241
.
39.
Peterson
,
L. C.
, and
Bogart
,
B. P.
(
1950
). “
A dynamical theory of the cochlea
,”
J. Acoust. Soc. Am.
22
,
369
381
.
40.
Probst
,
R.
,
Lonsbury-Martin
,
B.
, and
Martin
,
G.
(
1991
). “
A review of otoacoustic emissions
,”
J. Acoust. Soc. Am.
89
,
2027
2067
.
41.
Ren
,
T.
(
2004
). “
Reverse propagation of sound in the gerbil cochlea
,”
Nat. Neurosci.
7
,
333
334
.
42.
Rhode
,
W. S.
, and
Recio
,
A.
(
2000
). “
Study of mechanical motions in the basal region of the chinchilla cochlea
,”
J. Acoust. Soc. Am.
107
,
3317
3332
.
43.
Robles
,
L.
,
Ruggero
,
M. A.
, and
Rich
,
N. C.
(
1997
). “
Two-tone distortion on the basilar membrane of the chinchilla cochlea
,”
J. Neurophysiol.
77
,
2385
2399
.
44.
Robles
,
L.
, and
Ruggero
,
M. A.
(
2001
). “
Mechanics of the mammalian cochlea
,”
Physiol. Rev.
81
,
1305
1352
.
45.
Ruggero
,
M. A.
(
1993
). “
Distortion in those good harmonics
,”
Curr. Biol.
3
,
755
758
.
46.
Ryan
,
A.
(
1976
). “
Hearing sensitivity of the mongolian gerbil, Meriones unguiculatus
,”
J. Acoust. Soc. Am.
59
,
1222
1226
.
47.
Shera
,
C.
, and
Guinan
,
J. J., Jr.
(
1999
). “
Evoked otoacoustic emissions arise by two fundamentally different mechanisms: A taxonomy for mammalian OAEs
,”
J. Acoust. Soc. Am.
105
,
782
798
.
48.
Shera
,
C.
(
2001
). “
Intensity-invariance of fine time structure in basilar-membrane click responses: Implications for cochlear mechanics
,”
J. Acoust. Soc. Am.
110
,
332
348
.
49.
Siegel
,
J. H.
,
Kim
,
D. O.
, and
Molnar
,
C. E.
(
1982
). “
Effects of altering organ of Corti on cochlear DPs f2−f1 and 2 f1−f2,
J. Neurophysiol.
47
,
303
328
.
50.
Smoorenburg
,
G. F.
(
1972
). “
Combination tones and their origin
,”
J. Acoust. Soc. Am.
52
,
615
632
.
51.
Steele
,
C. R.
, and
Taber
,
L. A.
(
1979
). “
Comparison of WKB calculations and experimental results for three-dimensional cochlear models
,”
J. Acoust. Soc. Am.
65
,
1007
1018
.
52.
Talmadge
,
C. R.
,
Long
,
G. R.
,
Tubis
,
A.
, and
Dhar
,
S.
(
1999
). “
Experimental confirmation of the two-source interference model for the fine structure of distortion product otoacoustic emissions
,”
J. Acoust. Soc. Am.
105
,
275
292
.
53.
Timoshenko, S. (1959). Theory of Plates and Shells (McGraw Hill, New York).
54.
Watts
,
L.
(
2000
). “
The mode-coupling Liouville-Green approximation for a two-dimensional cochlear model
,”
J. Acoust. Soc. Am.
108
,
2266
2271
.
55.
Weiss
,
T. F.
, and
Leong
,
R.
(
1985
). “
A model for signal transmission in an ear having hair cells with free-standing stereocilia. IV. Mechanoelectric transduction stage
,”
Hear. Res.
20
,
175
195
.
56.
Xue
,
S.
,
Mountain
,
D. C.
and
Hubbard
,
A. E.
(
1995
). “
Electrically evoked basilar membrane motion.
J. Acoust. Soc. Am.
97
,
3030
3041
.
57.
Zurek
,
P. M.
, and
Sachs
,
R. M.
(
1979
). “
Combination tones at frequencies greater than the primary tones
,”
Science
205
,
600
602
.
This content is only available via PDF.
You do not currently have access to this content.