The speech intelligibility index (SII) (ANSI S3.5-1997) provides a means for estimating speech intelligibility under conditions of additive stationary noise or bandwidth reduction. The SII concept for estimating intelligibility is extended in this paper to include broadband peak-clipping and center-clipping distortion, with the coherence between the input and output signals used to estimate the noise and distortion effects. The speech intelligibility predictions using the new procedure are compared with intelligibility scores obtained from normal-hearing and hearing-impaired subjects for conditions of additive noise and peak-clipping and center-clipping distortion. The most effective procedure divides the speech signal into low-, mid-, and high-level regions, computes the coherence SII separately for the signal segments in each region, and then estimates intelligibility from a weighted combination of the three coherence SII values.

1.
Allen
,
J. B.
,
Hall
,
J. L.
, and
Jeng
,
P. S.
(
1990
). “
Loudness growth in 12-octave bands—a procedure for the assessment of loudness
,”
J. Acoust. Soc. Am.
88
,
745
753
.
2.
ANSI S3.22-1996 (1996). American National Standard: Specification of Hearing Aid Characteristics (American National Standards Institute, New York).
3.
ANSI S3.42-1992 (1992). American National Standard: Testing Hearing Aids with a Broadband Noise Signal (American National Standards Institute, New York).
4.
ANSI S3.5-1997 (1997). American National Standard: Methods for the Calculation of the Speech Intelligibility Index (American National Standards Institute, New York).
5.
ANSI S3.6-1989 (1989). American National Standard: Specification for Audiometers (American National Standards Institute, New York).
6.
Byrne
,
D.
, and
Dillon
,
H.
(
1986
). “
The National Acoustics Laboratories’ (NAL) new procedure for selecting the gain and frequency response of a hearing aid
,”
Ear Hear.
7
,
257
265
.
7.
Carter
,
G. C.
,
Knapp
,
C. H.
, and
Nuttall
,
A. H.
(
1973
). “
Estimation of the magnitude-squared coherence function via overlapped fast Fourier transform processing
,”
IEEE Trans. Audio Electroacoust.
21
,
337
344
.
8.
CCITT (1986). “Objective evaluation of non-linear distortion effects on voice transmission quality,” CCITT Study Group XII, Communication XII No. 8.
9.
CCITT (1987). “Re-evaluation of the objective method for measurement of non-linear distortion,” CCITT Study Group XII, Communication XII-175-E.
10.
Ching
,
T. Y. C.
,
Dillon
,
H.
, and
Byrne
,
D.
(
1998
). “
Speech recognition of hearing-impaired listeners: Predictions from audibility and the limited role of high-frequency amplification
,”
J. Acoust. Soc. Am.
103
,
1128
1140
.
11.
Crain
,
T.
, and
Van Tasel
,
D. J.
(
1994
). “
Effect of peak clipping on speech recognition threshold
,”
Ear Hear.
15
,
443
453
.
12.
Dubno
,
J. R.
, and
Schaefer
,
A. B.
(
1991
). “
Frequency selectivity for hearing-impaired and broadband-noise masked normal listeners
,”
Q. J. Exp. Psychol.
43
,
543
564
.
13.
Dyrlund
,
O.
(
1989
). “
Characterization of non-linear distortion in hearing aids using coherence: A pilot study
,”
Scand. Audiol.
18
,
143
148
.
14.
Eisenberg
,
L. S.
,
Dirks
,
D. D.
,
Takayanagi
,
S.
, and
Martinez
,
A. S.
(
1998
). “
Subjective judgments of clarity and intelligibility for filtered stimuli with equivalent speech intelligibility index predictions
,”
J. Speech Lang. Hear. Res.
41
,
327
339
.
15.
Festen
,
J. M.
, and
Plomp
,
R.
(
1990
). “
Effects of fluctuating noise and interfering speech on the speech reception threshold for impaired and normal hearing
,”
J. Acoust. Soc. Am.
88
,
1725
1736
.
16.
Fletcher
,
H.
, and
Galt
,
R. H.
(
1950
). “
The perception of speech and its relation to telephony
,”
J. Acoust. Soc. Am.
22
,
89
151
.
17.
Fortune
,
T. W.
, and
Preves
,
D. A.
(
1992
). “
Hearing aid saturation and aided loudness discomfort
,”
J. Speech Hear. Res.
35
,
175
185
.
18.
French
,
N. R.
, and
Steinberg
,
J. C.
(
1947
). “
Factors governing the intelligibility of speech sounds
,”
J. Acoust. Soc. Am.
19
,
90
119
.
19.
Gagné
,
J.-P.
(
1983
). “
Excess masking among listeners with a sensorineural hearing loss
,”
J. Acoust. Soc. Am.
83
,
2311
2321
.
20.
Glasberg
,
B. R.
, and
Moore
,
B. C. J.
(
1986
). “
Auditory filter shapes with unilateral and bilateral cochlear impairments
,”
J. Acoust. Soc. Am.
79
,
1020
1033
.
21.
Gordon-Salant
,
S.
, and
Fitzgibbons
,
P.
(
1995
). “
Comparing recognition of distorted speech using an equivalent signal-to-noise ratio
,”
J. Speech Hear. Res.
38
,
706
713
.
22.
Greenberg, S. (2005). “A multi-tier framework for understanding spoken language,” to appear in Listening to Speech: An Auditory Perspective, edited by S. Greenberg and W. Ainsworth (Erlbaum, Mahwah, NJ).
23.
Hornsby
,
B. W. Y.
, and
Ricketts
,
T. A.
(
2003
). “
The effects of hearing loss on the contributions of high- and low-frequency speech information to speech understanding
,”
J. Acoust. Soc. Am.
113
,
1706
1717
.
24.
Houtgast
,
T.
, and
Steeneken
,
H. J. M.
(
1985
). “
A review of the MTF concept in room acoustics and its use for estimating speech intelligibility in auditoria
,”
J. Acoust. Soc. Am.
77
,
1069
1077
.
25.
Kates
,
J. M.
(
1987
). “
The short-time articulation index
,”
J. Rehabil. Res. Dev.
24
,
271
276
.
26.
Kates
,
J. M.
(
1992
). “
On using coherence to measure distortion in hearing aids
,”
J. Acoust. Soc. Am.
91
,
2236
2244
.
27.
Kates
,
J. M.
(
2000
). “
Cross-correlation procedures for measuring noise and distortion in hearing aids
,”
J. Acoust. Soc. Am.
107
,
3407
3414
.
28.
Kates
,
J. M.
, and
Arehart
,
K. H.
(
2004
). “
A metric for evaluating speech intelligibility and quality in hearing aids
,”
J. Acoust. Soc. Am.
116
,
2536
2537
.
29.
Kates
,
J. M.
, and
Kozma-Spytek
,
L.
(
1994
). “
Quality ratings for frequency-shaped peak-clipped speech
,”
J. Acoust. Soc. Am.
95
,
3586
3594
.
30.
Knagenhjelm, H. P., and Kleijn, W. B. (1995). “Spectral dynamics is more important than spectral distortion,” Proc. IEEE Int. Conf. on Acoust. Speech and Sig. Proc., Detroit.
31.
Kozma-Spytek
,
L.
,
Kates
,
J. M.
, and
Revoile
,
S. G.
(
1996
). “
Quality ratings for frequency-shaped peak-clipped speech: Results for listeners with hearing loss
,”
J. Speech Hear. Res.
39
,
1115
1123
.
32.
Kryter
,
K. D.
(
1962
). “
Methods for the calculation and use of the Articulation Index
,”
J. Acoust. Soc. Am.
34
,
1689
1697
.
33.
Licklider
,
J. C. R.
(
1946
). “
Effects of amplitude distortion upon the intelligibility of speech
,”
J. Acoust. Soc. Am.
18
,
429
434
.
34.
Ludvigsen
,
C.
(
1987
). “
Prediction of speech intelligibility for normal-hearing and cochlearly hearing-impaired listeners
,”
J. Acoust. Soc. Am.
82
,
1162
1171
.
35.
Magnusson
,
L.
,
Karlsson
,
M.
, and
Leijon
,
A.
(
2001
). “
Predicted and measured speech recognition performance in noise with linear amplification
,”
Ear Hear.
22
,
46
57
.
36.
Moore
,
B. C. J.
, and
Glasberg
,
B. R.
(
1983
). “
Suggested formulas for calculating auditory-filter bandwidths and excitation patterns
,”
J. Acoust. Soc. Am.
74
,
750
753
.
37.
Nelder
,
J. A.
, and
Mead
,
R.
(
1965
). “
A simplex method for function minimization
,”
Comput. J.
7
,
308
313
.
38.
Nilsson
,
M.
,
Soli
,
S. D.
, and
Sullivan
,
J.
(
1994
). “
Development of the hearing in noise test for the measurement of speech reception thresholds in quiet and in noise
,”
J. Acoust. Soc. Am.
95
,
1085
99
.
39.
Oxenham
,
A. J.
, and
Bacon
,
S. P.
(
2003
). “
Cochlear compression: Perceptual measures and implications for normal and impaired hearing
,”
Ear Hear.
24
,
352
366
.
40.
Palmer
,
C. V.
,
Killion
,
M. C.
,
Wilber
,
L. A.
, and
Ballad
,
W. J.
(
1995
). “
Comparison of two hearing aid receiver-amplifier combinations using sound quality judgments
,”
Ear Hear.
16
,
587
598
.
41.
Pavlovic
,
C. V.
(
1984
). “
Use of the articulation index for assessing residual auditory functions in listeners with sensorineural hearing impairment
,”
J. Acoust. Soc. Am.
75
,
1253
1258
.
42.
Pavlovic
,
C. V.
,
Studebaker
,
G. A.
, and
Sherbecoe
,
R. L.
(
1986
). “
An articulation index based procedure for predicting the speech recognition performance of hearing-impaired individuals
,”
J. Acoust. Soc. Am.
80
,
50
57
.
43.
Payton
,
K. L.
, and
Braida
,
L. D.
(
1999
). “
A method to determine the speech transmission index from speech waveforms
,”
J. Acoust. Soc. Am.
106
,
3637
3648
.
44.
Peters
,
R. W.
,
Moore
,
B. C. J.
, and
Baer
,
T.
(
1998
). “
Speech reception thresholds in noise with and without spectral and temporal dips for hearing-impaired and normally hearing people
,”
J. Acoust. Soc. Am.
103
,
577
587
.
45.
Plomp
,
R.
(
1988
). “
The negative effect of amplitude compression in multichannel hearing aids in the light of the modulation transfer function
,”
J. Acoust. Soc. Am.
83
,
2322
2327
.
46.
Preminger
,
J. E.
, and
Van Tasell
,
D. J.
(
1995
). “
Quantifying the relation between speech quality and speech intelligibility
,”
J. Speech Hear. Res.
38
,
714
725
.
47.
Preves
,
D. A.
(
1990
). “
Expressing hearing aid noise and distortion with coherence measurements
,”
Am. Speech Hear. Assoc.
32
,
56
59
.
48.
Preves
,
D. A.
,
Beck
,
L. B.
,
Burnett
,
E. D.
, and
Teder
,
H.
(
1989
). “
Input stimuli for obtaining frequency responses of automatic gain control hearing aids
,”
J. Speech Hear. Res.
32
,
189
194
.
49.
Rankovic
,
C. M.
(
1998
). “
Factors governing speech reception benefits of adaptive linear filtering for listeners with sensorineural hearing loss
,”
J. Acoust. Soc. Am.
103
,
1043
1057
.
50.
Reger
,
S. N.
(
1936
). “
Differences in loudness response of the normal and hard-of-hearing at intensity levels slightly above threshold
,”
Ann. Otol. Rhinol. Laryngol.
45
,
1029
1036
.
51.
Rhebergen
,
K. S.
, and
Versfeld
,
N. J.
(
2004
). “
An SII-based approach to predict the speech intelligibility in fluctuating noise for normal-hearing listeners
,”
J. Acoust. Soc. Am.
115
,
2394
.
52.
Schneider
,
T.
, and
Jamieson
,
D. G.
(
1995
). “
Using maximum length sequence coherence for broadband distortion measurements in hearing aids
,”
J. Acoust. Soc. Am.
97
,
2282
2292
.
53.
Steeneken
,
H. J. M.
, and
Houtgast
,
T
(
1980
). “
A physical method for measuring speech-transmission quality
,”
J. Acoust. Soc. Am.
67
,
318
326
.
54.
Tan
,
C.-T.
,
Moore
,
B. C. J.
,
Zacharov
,
N.
, and
Matilla
,
V.-M.
(
2004
). “
Predicting the perceived quality of nonlinearly distorted music and speech signals
,”
J. Audio Eng. Soc.
52
,
699
711
.
55.
Tyler, R. S. (1986). “Frequency resolution in hearing-impaired listeners,” Frequency Selectivity in Hearing, edited by B. C. J. Moore (Academic, London), pp. 309–371.
56.
Yoo, S., Boston, R., Durrant, J. D., Kovacyk, K., Karn, S., Shaiman, S., El-Jaroudi, A., and Li, C-C. (2004). “Relative energy and intelligibility of transient speech components,” Proc. EUSIPCO, Vienna, 6–10 September.
57.
Zwicker
,
E.
(
1961
). “
Subdivision of the audible frequency range into critical bands
,”
J. Acoust. Soc. Am.
33
,
248
.
58.
Zwicker
,
E.
, and
Terhardt
,
E.
(
1980
). “
Analytical expressions for critical-band rate and critical bandwidth as a function of frequency
,”
J. Acoust. Soc. Am.
68
,
1523
1525
.
This content is only available via PDF.
You do not currently have access to this content.