Recent studies suggest that an auditory nonlinearity converts second-order sinusoidal amplitude modulation (SAM) (i.e., modulation of SAM depth) into a first-order SAM component, which contributes to the perception of second-order SAM. However, conversion may also occur in other ways such as cochlear filtering. The present experiments explored the source of the first-order SAM component by investigating the ability to detect a 5-Hz, first-order SAM probe in the presence of a second-order SAM masker beating at the probe frequency. Detection performance was measured as a function of masker-carrier modulation frequency, phase relationship between the probe and masker modulator, and probe modulation depth. In experiment 1, the carrier was a 5-kHz sinusoid presented either alone or within a notched-noise masker in order to restrict off-frequency listening. In experiment 2, the carrier was a white noise. The data obtained in both carrier conditions are consistent with the existence of a modulation distortion component. However, the phase yielding poorest detection performance varied across experimental conditions between 0° and 180°, confirming that, in addition to nonlinear mechanisms, cochlear filtering and off-frequency listening play a role in second-order SAM perception. The estimated magnitude of the modulation distortion component ranges from 5%–12%.

1.
Alcántara
,
J. I.
,
Moore
,
B. C. J.
,
Glasberg
,
B. R.
, and
Wilkinson
,
A. J. K.
(
2003
). “
Phase effects in masking: Within-Versus across-channel processes
,”
J. Acoust. Soc. Am.
114
,
2158
2166
.
2.
Bacon
,
S. P.
, and
Viemeister
,
N. F.
(
1985
). “
Temporal modulation transfer functions in normal-hearing and hearing-impaired subjects
,”
Audiology
24
,
117
134
.
3.
Dau
,
T.
,
Kollmeier
,
B.
, and
Kohlrausch
,
A.
(
1997a
). “
Modeling auditory processing of amplitude modulation: I. Modulation detection and masking with narrow-band carriers
,”
J. Acoust. Soc. Am.
102
,
2892
2905
.
4.
Dau
,
T.
,
Kollmeier
,
B.
, and
Kohlrausch
,
A.
(
1997b
). “
Modeling auditory processing of amplitude modulation: II. Spectral and temporal integration in modulation detection
,”
J. Acoust. Soc. Am.
102
,
2906
2919
.
5.
Ewert
,
S. D.
,
Verhey
,
J. L.
, and
Dau
,
T.
(
2002
). “
Spectro-temporal processing in the envelope-frequency domain
,”
J. Acoust. Soc. Am.
112
,
2921
2931
.
6.
Füllgrabe
,
C.
, and
Lorenzi
,
C.
(
2003
). “
The role of envelope beat cues in the detection and discrimination of second-order amplitude modulation
,”
J. Acoust. Soc. Am.
113
,
49
52
.
7.
Füllgrabe
,
C.
,
Meyer
,
B.
, and
Lorenzi
,
C.
(
2003
). “
Effect of cochlear damage on the detection of complex temporal envelopes
,”
Hear. Res.
178
,
35
43
.
8.
Kohlrausch
,
A.
,
Fassel
,
R.
, and
Dau
,
T.
(
2000
). “
The influence of carrier level and frequency on modulation and beat-detection thresholds for sinusoidal carriers
,”
J. Acoust. Soc. Am.
108
,
723
734
.
9.
Levitt
,
H.
(
1971
). “
Transformed up-down methods in psychoacoustics
,”
J. Acoust. Soc. Am.
49
,
467
477
.
10.
Lorenzi
,
C.
,
Soares
,
C.
, and
Vonner
,
T.
(
2001a
). “
Second-order temporal modulation transfer functions
,”
J. Acoust. Soc. Am.
110
,
1030
1038
.
11.
Lorenzi
,
C.
,
Simpson
,
M. I. G.
,
Millman
,
R. E.
,
Griffiths
,
T. D.
,
Woods
,
W. P.
,
Rees
,
A.
, and
Green
,
G. G. R.
(
2001b
). “
Second-order modulation detection thresholds for pure-tone and narrow-band noise carriers
,”
J. Acoust. Soc. Am.
110
,
2470
2478
.
12.
Lorenzi
,
C.
,
Sibellas
,
J.
,
Füllgrabe
,
C.
,
Gallégo
,
S.
,
Fugain
,
C.
, and
Meyer
,
B.
(
2004
). “
Effects of amplitude compression on first- and second-order modulation detection thresholds in cochlear implant listeners
,”
Int. J. Audiol.
43
,
264
270
.
13.
Moore
,
B. C. J.
, and
Glasberg
,
B. R.
(
2001
). “
Temporal modulation transfer functions obtained using sinusoidal carriers with normally hearing and hearing-impaired listeners
,”
J. Acoust. Soc. Am.
110
,
1067
1073
.
14.
Moore
,
B. C. J.
,
Sek
,
A.
, and
Glasberg
,
B. R.
(
1999
). “
Modulation masking produced by beating modulators
,”
J. Acoust. Soc. Am.
106
,
908
918
.
15.
Moore
,
B. C. J.
,
Glasberg
,
B. R.
,
Plack
,
C. J.
, and
Biswas
,
A. K.
(
1988
). “
The shape of the ear’s temporal window
,”
J. Acoust. Soc. Am.
83
,
1102
1116
.
16.
Patterson, R. D., Nimmo-Smith, J., Holdsworth, J., and Rice, P. (1987). “An efficient auditory filterbank based on the gammatone function,” paper presented at a Meeting of the IOC Speech Group on Auditory Modelling at RSRE.
17.
Sek
,
A.
, and
Moore
,
B. C. J.
(
2004
). “
Estimation of the level and phase of the simple distortion tone in the modulation domain
,”
J. Acoust. Soc. Am.
116
,
3031
3037
.
18.
Sheft
,
S.
, and
Yost
,
W. A.
(
1997
). “
Modulation detection interference with two-component masker modulators
,”
J. Acoust. Soc. Am.
102
,
1106
1112
.
19.
Shofner
,
W. P.
,
Sheft
,
S.
, and
Guzman
,
S. J.
(
1996
). “
Responses of ventral cochlear nucleus units in the chinchilla to amplitude modulation by low-frequency, two-tone complexes
,”
J. Acoust. Soc. Am.
99
,
3592
3605
.
20.
Strickland
,
E. A.
, and
Viemeister
,
N. F.
(
1996
). “
Cues for discrimination of envelopes
,”
J. Acoust. Soc. Am.
99
,
3638
3646
.
21.
Tandetnik
,
S.
,
Garnier
,
S.
, and
Lorenzi
,
C.
(
2001
). “
Measurement of first- and second-order modulation detection thresholds in listeners with cochlear hearing loss
,”
Br. J. Audiol.
35
,
355
364
.
22.
Verhey
,
J. L.
,
Ewert
,
S. D.
, and
Dau
,
T.
(
2003
). “
Modulation masking produced by complex tone modulators
,”
J. Acoust. Soc. Am.
114
,
2135
2146
.
23.
Viemeister
,
N. F.
(
1979
). “
Temporal modulation transfer functions based upon modulation thresholds
,”
J. Acoust. Soc. Am.
66
,
1364
1380
.
24.
Viemester, N. F. (2003) (personal communication).
25.
Wiegrebe
,
L.
, and
Patterson
,
R. D.
(
1999
). “
Quantifying the distortion products generated by amplitude-modulated noise
,”
J. Acoust. Soc. Am.
106
,
2709
2718
.
26.
Zwicker
,
E.
(
1956
). “
Die elementaren Grundlagen zur Bestimmung der Informationskapazität des Gehörs (The foundations for determining the information capacity of the auditory system)
,”
Acustica
6
,
356
381
.
This content is only available via PDF.
You do not currently have access to this content.