Time-reversal imaging (TRI) is analogous to matched-field processing, although TRI is typically very wideband and is appropriate for subsequent target classification (in addition to localization). Time-reversal techniques, as applied to acoustic target classification, are highly sensitive to channel mismatch. Hence, it is crucial to estimate the channel parameters before time-reversal imaging is performed. The channel-parameter statistics are estimated here by applying a geoacoustic inversion technique based on Gibbs sampling. The maximum a posteriori (MAP) estimate of the channel parameters are then used to perform time-reversal imaging. Time-reversal implementation requires a fast forward model, implemented here by a normal-mode framework. In addition to imaging, extraction of features from the time-reversed images is explored, with these applied to subsequent target classification. The classification of time-reversed signatures is performed by the relevance vector machine (RVM). The efficacy of the technique is analyzed on simulated in-channel data generated by a free-field finite element method (FEM) code, in conjunction with a channel propagation model, wherein the final classification performance is demonstrated to be relatively insensitive to the associated channel parameters. The underlying theory of Gibbs sampling and TRI are presented along with the feature extraction and target classification via the RVM.

1.
L.
Carin
,
H.
Liu
,
T.
Yoder
,
L.
Couchman
,
B.
Houston
, and
J.
Bucaro
, “
Wideband time-reversal imaging of an elastic target in an acoustic waveguide
,”
J. Acoust. Soc. Am.
115
,
259
268
(
2004
).
2.
P.
Gerstoft
, “
Ocean acoustic inversion with estimation of a posteriori probability distributions
,”
J. Acoust. Soc. Am.
104
,
808
819
(
1998
).
3.
R. P.
Gorman
and
T. J.
Sejnowski
, “
Learned classification of sonar targets using a massively parallel network
,”
IEEE Trans. Acoust., Speech, Signal Process.
36
,
1135
1140
(
1988
).
4.
G. Goo and W. L. Au, “Detection and identification of buried objects in shallow water,” in Proc. SPIE Int. Symp. Aerospace/Defense Sensing Control, Orlando, FL, April 1996, pp. 201–214.
5.
M. K.
Broadhead
, “
Broadband source signature extraction from underwater acoustics data with sparse environment information
,”
J. Acoust. Soc. Am.
97
,
1322
1325
(
1995
).
6.
M. K.
Broadhead
,
L. A.
Pflug
, and
R. L.
Field
, “
Use of high order statistics in source signature estimation
,”
J. Acoust. Soc. Am.
107
,
2576
2585
(
2000
).
7.
P.
Runkle
,
P.
Bharadwaj
, and
L.
Carin
, “
Hidden Markov Models for multi-aspect target classification
,”
IEEE Trans. Signal Process.
47
,
2035
2040
(
1999
).
8.
W. A.
Kuperman
,
W. S.
Hodgkiss
,
H. C.
Song
,
T.
Akal
,
C.
Ferla
, and
D. R.
Jackson
, “
Phase conjugation in the ocean: Experimental demonstration of an acoustic time reversal mirror
,”
J. Acoust. Soc. Am.
103
,
25
40
(
1998
).
9.
A.
Bageroer
,
W. A.
Kuperman
, and
P. N.
Mikhalevsky
, “
An overview of matched field methods in ocean acoustics
,”
IEEE J. Ocean. Eng.
18
(
4
),
401
424
(
1993
).
10.
P.
Blomberg
,
G.
Papanicolaou
, and
H. K.
Zhao
, “
Super-resolution in time-reversal acoustics
,”
J. Acoust. Soc. Am.
111
,
230
248
(
2002
).
11.
J. S.
Kim
,
H. C.
Song
, and
W. A.
Kuperman
, “
Adaptive time-reversal mirror
,”
J. Acoust. Soc. Am.
109
,
1817
1825
(
2001
).
12.
D. R.
Jackson
and
D. R.
Dowling
, “
Phase conjugation in underwater acoustics
,”
J. Acoust. Soc. Am.
89
,
171
181
(
1991
).
13.
M.
Fink
, “
Time-reversal acoustics
,”
Phys. Today
50
,
34
40
(
1997
).
14.
P.
Stoica
and
A.
Nehorai
, “
MUSIC, maximum likelihood, and Cramer-Rao Bound
,”
IEEE Trans. Acoust., Speech, Signal Process.
37
(
5
),
720
741
(
1989
).
15.
S. K.
Lehman
and
A. J.
Devaney
, “
Transmission mode acoustic time-reversal imaging for nondestructive evaluation
,”
J. Acoust. Soc. Am.
112
(
5
),
2390
2400
(
2002
).
16.
H. Liu, N. Dasgupta, and L. Carin, “Time-reversal imaging for wideband underwater target classification,” in Proceedings of the International Conference on Acoustics Speech and Signal Processing (ICASSP), Hong Kong, 6–10 April, 2003.
17.
S. E.
Dosso
, “
Quantifying uncertainty in geoacoustic inversion. A fast Gibbs sampler approach
,”
J. Acoust. Soc. Am.
111
,
129
142
(
2002
).
18.
S. E.
Dosso
, “
Quantifying uncertainty in geoacoustic inversion. Application to broadband, shallow-water data
,”
J. Acoust. Soc. Am.
111
,
143
159
(
2002
).
19.
M. K.
Sen
and
P. L.
Stoffa
, “
Bayesian inference, Gibbs’ sampler and uncertainty estimation in geophysical inversion
,”
Geophys. Prospect.
44
,
313
350
(
1996
).
20.
N. Dasgupta and L. Carin, “Time-reversal imaging of distant targets in a shallow water channel,” Proc. Oceans 2003, San Diego, 22–26 September, 2003.
21.
M. E.
Tipping
, “
Sparse Bayesian learning and the relevance vector machine
,”
J. Mach. Learn. Res.
1
,
211
244
(
2001
).
22.
N. Cristianini and J. Shawe-Taylor, An Introduction to Support Vector Machine (Cambridge U.P., Cambridge, 2000).
23.
S. A. Solla, T. K. Leen, and K.-R. Müller (Ed.), “The Relevance Vector Machine,” in Advances in Neural Information Processing Systems 12 (MIT, Cambridge, MA, 2001), pp. 652–658.
24.
P.
Roux
and
M.
Fink
, “
Time reversal in a waveguide: Study of the temporal and spatial focusing
,”
J. Acoust. Soc. Am.
107
,
2418
2429
(
2000
).
25.
L.
Borcea
,
G.
Papanicolaou
,
C.
Tsogka
, and
J.
Berryman
, “
Imaging and time reversal in random media
,”
Inverse Probl.
18
,
1247
1279
(
2002
).
26.
C.
Bordos
and
M.
Fink
, “
Mathematical foundations of the time reversal mirror
,”
Asymptotic Anal.
29
(
2
),
157
182
(
2002
).
27.
N.
Metropolis
,
A.
Rosenbluth
,
M.
Rosenbluth
,
A.
Teller
, and
E.
Teller
, “
Equation of state calculation by fast computing machines
,”
J. Chem. Phys.
21
,
1087
1092
(
1953
).
28.
A. Gelman, J. B. Carlin, H. S. Stern, and D. B. Rubin, Bayesian Data Analysis (Chapman & Hall, London, 1995).
29.
M. B. Porter, “The KRAKEN Normal Mode Program,” http://oalib.saic.com/Modes/AcousticsToolbox/manual_html/kraken.html. See also M. B. Porter, “A numerical method for computing ocean acoustic modes,” Ph.D. dissertation, Northwestern Univ., 1984.
30.
F. Jensen, W. Kuperman, M. Porter, and H. Schmidt, Computational Ocean Acoustics, (Springer-Verlag, New York, 2000).
31.
B. Szabo and I. Babuska, Finite Element Analysis (Wiley, New York, 1991).
32.
J. J.
Grannell
,
J. J.
Shirron
, and
L. S.
Couchman
, “
A hierarchic p-version boundary-element method for axisymmetric acoustic scattering_and radiation
,”
J. Acoust. Soc. Am.
95
,
2320
2329
(
1994
).
33.
B. H.
Houston
,
M. H.
Marcus
,
J. A.
Bucaro
,
E. G.
Williams
, and
D. M.
Photiadis
, “
The structural acoustics and active control of interior noise in a ribbed cylindrical shell
,”
J. Acoust. Soc. Am.
99
,
3497
3512
(
1996
).
34.
F. K.
Gruber
,
E. A.
Marengo
, and
A. J.
Devaney
, “
Time-reversal imaging with multiple signal classification considering multiple scattering between targets
,”
J. Acoust. Soc. Am.
115
,
3042
3047
(
2004
).
35.
L.
Borcea
,
G.
Papanicolaou
, and
C.
Tsogka
, “
Theory and applications of time reversal and interferometric imaging
,”
Inverse Probl.
19
,
5139
5164
(
2003
).
36.
J. Shawe-Taylor and N. Cristianini, Kernel Methods for Pattern Analysis (Cambridge U.P., Cambridge, 2004).
37.
N.
Dasgupta
,
P.
Runkle
,
L.
Couchman
, and
L.
Carin
, “
Dual Hidden Markov Model for characterizing wavelet coefficients from multi-aspect scattering data
,”
Signal Process.
81
,
1303
1316
(
2001
).
38.
N.
Dasgupta
,
P.
Runkle
,
L.
Carin
,
L.
Couchman
,
T.
Yoder
,
J.
Bucaro
, and
G.
Dobeck
, “
Class-based Target Identification with Multi-Aspect Scattering Data
,”
IEEE J. Ocean. Eng.
28
(
2
),
271
282
(
2003
).
39.
S.
Kim
,
G. F.
Edelmann
,
W. A.
Kuperman
,
W. S.
Hodgkiss
, and
H. C.
Song
, “
Spatial resolution of time-reversal arrays in shallow water
,”
J. Acoust. Soc. Am.
110
,
820
829
(
2001
).
This content is only available via PDF.
You do not currently have access to this content.