The sensitivity of listeners to changes in the center frequency of vowel-like harmonic complexes as a function of the center frequency of the complex cannot be explained by changes in the level of the stimulus [Lyzenga and Horst, J. Acoust. Soc. Am. 98, 1943–1955 (1995)]. Rather, a complex pattern of sensitivity is seen; for a spectrum with a triangular envelope, the greatest sensitivity occurs when the center frequency falls between harmonics, whereas for a spectrum with a trapezoidal envelope, greatest sensitivity occurs when the center frequency is aligned with a harmonic. In this study, the thresholds of a population model of auditory-nerve (AN) fibers were quantitatively compared to these trends in psychophysical thresholds. Single-fiber and population model responses were evaluated in terms of both average discharge rate and the combination of rate and timing information. Results indicate that phase-locked responses of AN fibers encode phase transitions associated with minima in these amplitude-modulated stimuli. The temporal response properties of a single AN fiber, tuned to a frequency slightly above the center frequency of the harmonic complex, were able to explain the trends in thresholds for both triangular- and trapezoidal-shaped spectra.

1.
Carney
,
L. H.
,
McDuffy
,
M. J.
, and
Shekhter
,
I.
(
1999
). “
Frequency glides in the impulse responses of auditory-nerve fibers
,”
J. Acoust. Soc. Am.
105
,
2384
2391
.
2.
Cramér, H. (1951). Mathematical Methods of Statistics (Princeton University Press, Princeton, NJ), Chap. 32.
3.
Feth
,
L. L.
(
1974
). “
Frequency discrimination of complex periodic tones
,”
Percept. Psychophys.
15
,
375
379
.
4.
Flanagan
,
J. L.
(
1955
). “
A difference limen for vowel formant frequency
,”
J. Acoust. Soc. Am.
27
,
613
617
.
5.
Glasberg
,
B. R.
, and
Moore
,
B. C. J.
(
1990
). “
Derivation of auditory filter shapes from notched-noise data
,”
Hear. Res.
47
,
103
138
.
6.
Goldstein, J. L., and Srulovicz, P. (1977). “Auditory-nerve spike intervals as an adequate basis for aural spectrum analysis,” in Psychophysics and Physiology of Hearing, edited by E. F. Evans and J. P. Wilson (Academic, New York), pp. 337–347.
7.
Greenwood
,
D. D.
(
1990
). “
A cochlear frequency-position function for several species—29 years later
,”
J. Acoust. Soc. Am.
87
,
2592
2605
.
8.
Heinz
,
M. G.
,
Colburn
,
H. S.
, and
Carney
,
L. H.
(
2001a
). “
Evaluating auditory performance limits. I. One-parameter discrimination using a computational model for the auditory nerve
,”
Neural Comput.
13
,
2273
2316
.
9.
Heinz
,
M. G.
,
Colburn
,
H. S.
, and
Carney
,
L. H.
(
2001b
). “
Rate and timing cues associated with the cochlear amplifier: Level discrimination based on monaural cross-frequency coincidence detection
,”
J. Acoust. Soc. Am.
110
,
2065
2084
.
10.
Heinz
,
M. G.
,
Zhang
,
X.
,
Bruce
,
I. C.
, and
Carney
,
L. H.
(
2001c
). “
Auditory-nerve model for predicting performance limits of normal and impaired listeners
,”
J. Assoc. Res. Otolaryngol
2
,
91
96
.
11.
Johnson
,
D. H.
, and
Kiang
,
N. Y. S.
(
1976
). “
Analysis of discharges recorded simultaneously from pairs of auditory-nerve fibers
,”
Biophys. J.
16
,
719
734
.
12.
Kewley-Port
,
D.
, and
Watson
,
C. S.
(
1994
). “
Formant-frequency discrimination for isolated English vowels
,”
J. Acoust. Soc. Am.
95
,
485
496
.
13.
Lyzenga
,
J.
, and
Horst
,
J. W.
(
1995
). “
Frequency discrimination of bandlimited harmonic complexes related to vowel formants
,”
J. Acoust. Soc. Am.
98
,
1943
1955
.
14.
Lyzenga
,
J.
, and
Horst
,
J. W.
(
1997
). “
Frequency discrimination of stylized synthetic vowels with a single formant
,”
J. Acoust. Soc. Am.
102
,
1755
1767
.
15.
Mermelstein
,
P.
(
1978
). “
Difference limens for formant frequencies of steady-state and consonant-bound vowels
,”
J. Acoust. Soc. Am.
63
,
572
580
.
16.
Nelson
,
P. C.
, and
Carney
,
L. H.
(
2004
). “
A phenomenological model of peripheral and central neural responses to amplitude-modulated tones
,”
J. Acoust. Soc. Am.
116
,
2173
2196
.
17.
Rabiner, L. R., and Schafer, R. W. (1978). Digital Processing of Speech Signals (Prentice-Hall, Upper Saddle River, NJ).
18.
Rasmussen
,
G. L.
(
1940
). “
Studies of the VIIIth cranial nerve in man
,”
Laryngoscope
50
,
67
83
.
19.
Siebert
,
W. M.
(
1965
). “
Some implication of the stochastic behavior of primary auditory neurons
,”
Kybernetik
2
,
206
215
.
20.
Siebert, W. M. (1968). “Stimulus transformation in the peripheral auditory system,” in Recognizing Patterns, edited by P. A. Kolers and M. Eden (MIT Press, Cambridge, MA), pp. 104–133.
21.
Sinnott
,
J. M.
, and
Kreiter
,
N. A.
(
1991
). “
Differential sensitivity to vowel continua in Old World monkeys (Macaca) and humans
,”
J. Acoust. Soc. Am.
89
,
2421
2429
.
22.
Srulovicz
,
P.
, and
Goldstein
,
J. L.
(
1983
). “
The central spectrum: A synthesis of auditory-nerve timing and place cues in monaural communication of frequency spectrum
,”
J. Acoust. Soc. Am.
73
,
1266
1276
.
23.
Tan, Q. (2003). “Computational and statistical analysis of auditory peripheral processing for vowel-like signals,” Dissertation, Boston University.
24.
Tan
,
Q.
, and
Carney
,
L. H.
(
2003
). “
A phenomenological model for the responses of auditory-nerve fibers. II. Nonlinear tuning with a frequency glide
,”
J. Acoust. Soc. Am.
114
,
2007
2020
.
Tan
,
Q.
, and
Carney
,
L. H.
, Erratum (
2004
).
J. Acoust. Soc. Am.
116
,
3224
3225
.
25.
van Trees, H. L. (1968). Detection, Estimation, and Modulation Theory: Part I (Wiley, New York), Chap. 2.
26.
Van Zanten, G. A. (1980). “Temporal modulation transfer functions for intensity modulated noise bands,” in Psychophysical, Physiological and Behavioural Studies in Hearing (Delft University Press, Delft), pp. 206–209.
This content is only available via PDF.
You do not currently have access to this content.