High rate underwater communications have traditionally relied on equalization methods to overcome the intersymbol interference (ISI) caused by multipath propagation. An alternative technique has emerged in the form of time-reversal, which comes at virtually no cost in computational complexity, but sacrifices the data rate and relies on the use of large arrays to reduce ISI. In this paper, spatiotemporal processing for optimal multipath suppression is addressed analytically. A communication link between a single element and an array is considered in several scenarios: uplink and downlink transmission, with and without channel state information and varying implementation complexity. Transmit/receive techniques are designed which simultaneously maximize the data detection signal-to-noise ratio and minimize the residual ISI, while maintaining maximal data rate in a given bandwidth and satisfying a constraint on transmitted energy. The performance of so-obtained focusing techniques is compared to the standard ones on a shallow water channel operating in a 5 kHz bandwidth around a 15 kHz center frequency. Results demonstrate benefits of focusing techniques whose performance is not conditioned on the array size. Optimal configurations are intended as a basis for adaptive system implementation in which channel estimates will replace the actual values.

1.
M.
Stojanovic
,
J.
Catipovic
, and
J.
Proakis
, “
Reduced-complexity multichannel processing of underwater acoustic communication signals
,”
J. Acoust. Soc. Am.
98
,
961
972
(
1995
).
2.
M.
Fink
,
F.
Wu
,
J.-L.
Tomas
, and
D.
Cassereau
, “
Time-reversal of ultrasonic fields—Parts I, II and III
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
39
,
555
592
(
1992
).
3.
W. A.
Kuperman
,
W. S.
Hodgkiss
,
H. C.
Song
,
T.
Akal
,
C.
Ferla
, and
D. R.
Jackson
, “
Phase conjugation in the ocean: Experimental demonstration of an acoustic time-reversal mirror
,”
J. Acoust. Soc. Am.
103
,
25
40
(
1998
).
4.
W. S.
Hodgkiss
,
H. C.
Song
,
W. A.
Kuperman
,
T.
Akal
,
C.
Ferla
, and
D. R.
Jackson
, “
A long-range and variable focus phase-conjugation experiment in shallow water
,”
J. Acoust. Soc. Am.
105
,
1597
1604
(
1999
).
5.
W. S. Hodgkiss, J. D. Skinner, G. E. Edmonds, R. A. Harriss, and D. E. Ensberg, “A high frequency phase-conjugation array,” in Proceedings of the IEEE Oceans’01 Conference, pp. 1581–1585, 2001.
6.
J. S.
Kim
,
H. C.
Song
, and
W. A.
Kuperman
, “
Adaptive time-reversal mirror
,”
J. Acoust. Soc. Am.
109
,
1817
1825
(
2001
).
7.
G. Edelmann, W. S. Hodgkiss, W. A. Kuperman, and H. C. Song, “Underwater acoustic communication using time-reversal,” in Proceedings of the IEEE Oceans’01 Conference, 2001.
8.
H. C.
Song
,
G.
Edelmann
,
S.
Kim
,
W. S.
Hodgkiss
,
W. A.
Kuperman
, and
T.
Akal
, “
Low and high frequency ocean acoustic phase conjugation experiments
,”
Proc. SPIE
4123
,
104
108
(
2000
).
9.
D.
Jackson
and
D.
Dowling
, “
Phase-conjugation in underwater acoustics
,”
J. Acoust. Soc. Am.
89
,
171
181
(
1991
).
10.
D.
Rouseff
,
D. R.
Jackson
,
W. L. J.
Fox
,
C. D.
Jones
,
J. A.
Ritcey
, and
D. R.
Dowling
, “
Underwater acoustic communication by passive-phase-conjugation: Theory and experimental results
,”
IEEE J. Ocean. Eng.
26
,
821
831
(
2001
).
11.
D. Jackson, J. A. Ritcey, W. L. J. Fox, C. D. Jones, D. Rouseff, and D. R. Dowling, “Experimental testing of passive phase-conjugation for underwater acoustic communication,” in Proceedings of the 34th Asilomar Conference, 2000, pp. 680–683.
12.
J. Flynn, W. L. J. Fox, J. A. Ritcey, D. R. Jackson, and D. Rouseff, “Decision-directed passive phase-conjugation for underwater acoustic communications with results from a shallow-water trial,” in Proceedings of the 35th Asilomar Conference, 2001, pp. 1420–1427.
13.
D. Rouseff, J. A. Flynn, W. L. J. Fox, and J. A. Ritcey, “Decision-directed passive phase-conjugation for underwater acoustic communication: experimental results,” in Proceedings of the IEEE Oceans’02 Conference (2002).
14.
J. A. Flynn, W. L. J. Fox, J. A. Ritcey, and D. Rouseff, “Performance of reduced-complexity multi-channel equalizers for underwater acoustic communications,” in Proceedings of the 36th Asilomar Conference, 2002, Vol. 1, pp. 453–460.
15.
J. Gomes and V. Barroso, “The performance of sparse time-reversal mirrors in the context of underwater communications,” in Proceedings of the 10th IEEE Workshop on Statistical Signal and Array Processing, 2000, pp. 727–731.
16.
J. Gomes and V. Barroso, “A matched-field processing approach to underwater acoustic communication,” in Proceedings of the IEEE Oceans’99 Conference, 1999, pp. 991–995.
17.
J. Gomes and V. Barroso, “Asymmetric underwater acoustic communication using time-reversal mirror,” in Proceedings of the IEEE Oceans’01 Conference, 2000.
18.
J. Gomes and V. Barroso, “Wavefront segmentation in phase conjugate arrays for spatially modulated acoustic communication,” in Proceedings of the IEEE Oceans’01 Conference, 2001, pp. 2236–2243.
19.
J. Gomes and V. Barroso, “Ray-based analysis of a time-reversal mirror for underwater acoustic communication,” in Proceedings of the ICASSP’00 Conference, 2000, pp. 2981–2984.
20.
J. Gomes and V. Barroso, “Time-reversed communication over Doppler-spread underwater channels,” in Proceedings of the ICASSP’02 Conference, 2002, pp. 2849–2852(III).
21.
P. Hursky, M. Porter, J. Rice, and V. McDonald, “Passive phase-conjugate signaling using pulse-position modulation,” in Proceedings of the IEEE Oceans’01 Conference, 2001.
22.
T. C.
Yang
, “
Temporal resolutions of time-reversal and passive phase-conjugation for underwater acoustic communications
,”
IEEE J. Ocean. Eng.
28
,
229
245
(
2003
).
23.
J.
Skim
and
K. C.
Shin
, “
Multiple focusing with adaptive time-reversal mirror
,”
J. Acoust. Soc. Am.
115
,
600
606
(
2004
).
24.
D.
Gesbert
,
M.
Shafi
,
D.
Shiu
,
P. J.
Smith
, and
A.
Naguib
, “
From theory to practice: An overview of MIMO space-time coded wireless systems
,”
IEEE J. Sel. Areas Commun.
21
,
281
302
(
2003
).
25.
M.
Stojanovic
and
Z.
Zvonar
, “
Multichannel processing of broadband multiuser communication signals in shallow water acoustic channels
,”
IEEE J. Ocean. Eng.
21
,
156
166
(
1996
).
26.
D.
Kilfoyle
,
J.
Preisig
, and
A.
Baggeroer
, “
Spatial modulation over partially coherent multi-input/multi-output channels
,”
IEEE Trans. Signal Process.
51
,
794
804
(
2003
).
27.
J. G. Proakis, Digital Communications (Mc-Graw Hill, New York, 1995).
28.
M. Stojanovic, “Efficient acoustic signal processing based on channel estimation for high rate underwater information,” J. Acoust. Soc. Am. (submitted) (available at http://www.mit.edu/millitsa/publications.html)
This content is only available via PDF.
You do not currently have access to this content.