The present study was undertaken to examine if a subject’s voice F0 responded not only to perturbations in pitch of voice feedback but also to changes in pitch of a side tone presented congruent with voice feedback. Small magnitude brief duration perturbations in pitch of voice or tone auditory feedback were randomly introduced during sustained vowel phonations. Results demonstrated a higher rate and larger magnitude of voice F0 responses to changes in pitch of the voice compared with a triangular-shaped tone (experiment 1) or a pure tone (experiment 2). However, response latencies did not differ across voice or tone conditions. Data suggest that subjects responded to the change in F0 rather than harmonic frequencies of auditory feedback because voice F0 response prevalence, magnitude, or latency did not statistically differ across triangular-shaped tone or pure-tone feedback. Results indicate the audio–vocal system is sensitive to the change in pitch of a variety of sounds, which may represent a flexible system capable of adapting to changes in the subject’s voice. However, lower prevalence and smaller responses to tone pitch-shifted signals suggest that the audio–vocal system may resist changes to the pitch of other environmental sounds when voice feedback is present.

1.
Anstis
,
S. M.
, and
Cavanagh
,
P.
(
1979
). “
Adaptation to frequency-shifted auditory feedback
,”
Percept. Psychophys.
26
,
449
458
.
2.
Baer
,
T.
(
1979
). “
Reflex activation of laryngeal muscles by sudden induced subglottal pressure changes
,”
J. Acoust. Soc. Am.
65
,
1271
1275
.
3.
Baken, R. J., and Orlikoff, R. F. (2000). Clinical Measurement of Speech and Voice, 2nd ed. (Singular, San Diego).
4.
Baum
,
S. R.
,
McFarland
,
D. H.
, and
Diab
,
M.
(
1996
). “
Compensation to articulatory perturbation: Perceptual data
,”
J. Acoust. Soc. Am.
99
,
3791
3794
.
5.
Burnett
,
T. A.
, and
Larson
,
C. R.
(
2002
). “
Early pitch shift response is active in both steady and dynamic voice pitch control
,”
J. Acoust. Soc. Am.
112
,
1058
1063
.
6.
Burnett
,
T. A.
,
Freedland
,
M. B.
,
Larson
,
C. R.
, and
Hain
,
T. C.
(
1998
). “
Voice f0 responses to manipulations in pitch feedback
,”
J. Acoust. Soc. Am.
103
,
3153
3161
.
7.
Cole
,
K. J.
, and
Abbs
,
J. H.
(
1988
). “
Grip force adjustments evoked by load force perturbations of a grasped object
,”
J. Neurophysiol.
60
,
1513
1522
.
8.
Cowie, R., and Douglas-Cowie, E. (1992). “Postlingually acquired deafness,” in Trends in Linguistics, Studies and Monographs (Mouton de Gruyter, New York).
9.
Donath
,
T. M.
,
Natke
,
U.
, and
Kalveram
,
K. T.
(
2002
). “
Effects of frequency-shifted auditory feedback on voice f0 contours in syllables
,”
J. Acoust. Soc. Am.
111
,
357
366
.
10.
Elliott
,
L.
, and
Niemoeller
,
A.
(
1970
). “
The role of hearing in controlling voice fundamental frequency
,”
Int. Aud.
IX
,
47
52
.
11.
Gracco
,
V. L.
, and
Abbs
,
J. H.
(
1985
). “
Dynamic control of the perioral system during speech: Kinematic analyses of autogenic and nonautogenic sensorimotor processes
,”
J. Neurophysiol.
54
,
418
432
.
12.
Hain
,
T. C.
,
Burnett
,
T. A.
,
Larson
,
C. R.
, and
Kiran
,
S.
(
2001
). “
Effects of delayed auditory feedback (daf) on the pitch-shift reflex
,”
J. Acoust. Soc. Am.
109
,
2146
2152
.
13.
Hain
,
T. C.
,
Burnett
,
T. A.
,
Kiran
,
S.
,
Larson
,
C. R.
,
Singh
,
S.
, and
Kenney
,
M. K.
(
2000
). “
Instructing subjects to make a voluntary response reveals the presence of two components to the audio–vocal reflex
,”
Exp. Brain Res.
130
,
133
141
.
14.
Held
,
R.
(
1965
). “
Plasticity in sensory-motor systems
,”
Sci. Am.
213
(
5
),
84
94
.
15.
Houde
,
J. F.
, and
Jordan
,
M. I.
(
1998
). “
Sensorimotor adatation in speeech production
,”
Science
279
,
1213
1216
.
16.
Jones
,
J. A.
, and
Munhall
,
K. G.
(
2002
). “
The role of auditory feedback during phonation: Studies of mandarin tone production
,”
J. Phonetics
30
,
303
320
.
17.
Jürgens
,
U.
, and
Kirzinger
,
A.
(
1985
). “
The laryngeal sensory pathway and its role in phonation. A brain lesioning study in the squirrel monkey
,”
Exp. Brain Res.
59
,
118
124
.
18.
Kawahara, H. (1995). “Hearing voice: Transformed auditory feedback effects on voice pitch control,” ‘Computational Auditory Scene Analysis’and ‘International Joint Conference on Artificial’ Intelligence,” Montreal.
19.
Lane
,
H.
, and
Tranel
,
B.
(
1971
). “
The Lombard sign and the role of hearing in speech
,”
J. Speech Hear. Res.
14
,
677
709
.
20.
Larson
,
C. R.
,
Burnett
,
T. A.
,
Kiran
,
S.
, and
Hain
,
T. C.
(
2000
). “
Effects of pitch-shift onset velocity on voice f0 responses
,”
J. Acoust. Soc. Am.
107
,
559
564
.
21.
Larson
,
C. R.
,
Burnett
,
T. A.
,
Bauer
,
J. J.
,
Kiran
,
S.
, and
Hain
,
T. C.
(
2001
). “
Comparisons of voice f0 responses to pitch-shift onset and offset conditions
,”
J. Acoust. Soc. Am.
110
,
2845
2848
.
22.
Lechner
,
B.
(
1979
). “
The effects of delayed auditory feedback and masking on the fundamental frequency of stutterers and non-stutterers
,”
J. Speech Hear. Res.
22
,
243
253
.
23.
Ludlow
,
C.
,
Van Pelt
,
F.
, and
Koda
,
J.
(
1992
). “
Characteristics of late responses to superior laryngeal nerve stimulation in humans
,”
Ann. Otol. Rhinol. Laryngol.
101
,
127
134
.
24.
Mürbe
,
D.
,
Pabst
,
F.
,
Hofmann
,
G.
, and
Sundberg
,
J.
(
2002
). “
Significance of auditory and kinesthetic feedback to singers’ pitch control
,”
J. Voice
16
,
44
51
.
25.
Natke
,
U.
, and
Kalveram
,
K. T.
(
2001
). “
Effects of frequency-shifted auditory feedback on fundamental frequency of long stressed and unstressed syllables
,”
J. Speech Lang. Hear. Res.
44
,
577
584
.
26.
Natke
,
U.
,
Donath
,
T. M.
, and
Kalveram
,
K. T.
(
2003
). “
Control of voice fundamental frequency in speaking versus singing
,”
J. Acoust. Soc. Am.
113
,
1587
1593
.
27.
Parlitz
,
D.
, and
Bangert
,
M.
(
1999
). “
Short and medium motor responses to auditory pitch shift: Latency measurements of the professional musician’s audio-motor loop for intonation
,”
J. Acoust. Soc. Am.
105
,
1298
.
28.
Sapir
,
S.
,
McClean
,
M.
, and
Luschei
,
E. S.
(
1983a
). “
Effects of frequency-modulated auditory tones on the voice fundamental frequency in humans
,”
J. Acoust. Soc. Am.
73
,
1070
1073
.
29.
Sapir
,
S.
,
McClean
,
M. D.
, and
Larson
,
C. R.
(
1983b
). “
Human laryngeal responses to auditory stimulation
,”
J. Acoust. Soc. Am.
73
,
315
321
.
30.
Shaiman
,
S.
, and
Gracco
,
V. L.
(
2002
). “
Task-specific sensorimotor interactions in speech production
,”
Exp. Brain Res.
146
,
411
418
.
31.
Shalev
,
A. Y.
,
Orr
,
S. P.
,
Peri
,
T.
,
Schreiber
,
S.
, and
Pitman
,
R. K.
(
1992
). “
Physiologic responses to loud tones in Israeli patients with posttraumatic stress disorder
,”
Arch. Gen. Psychiatry
49
,
870
875
.
32.
Siegel, S., and Castellan, N. J. (1988). Nonparametric Statistics for the Behavioral Sciences (McGraw-Hill, New York).
33.
Sundberg, J., Iwarsson, J., and Billström, A.-M. H. (1993). “Significance of mechanoreceptors in the subglottal mucosa for subglottal pressure control in singers,” 22nd Annual Symposium Care of the Professional Voice, Philadelphia.
34.
Ternström
,
S.
,
Sundberg
,
J.
, and
Colldén
,
A.
(
1988
). “
Articulatory f0 perturbations and auditory feedback
,”
J. Speech Hear. Res.
31
,
187
192
.
35.
Wier
,
C. C.
,
Jesteadt
,
W.
, and
Green
,
D. M.
(
1977
). “
Frequency discrimination as a function of frequency and sensation level
,”
J. Acoust. Soc. Am.
61
,
178
184
.
This content is only available via PDF.
You do not currently have access to this content.