Estimation of geoacoustic parameters using acoustic data from a surface ship was performed for a shallow water region in the Gulf of Mexico. The data were recorded from hydrophones in a bottom mounted, horizontal line array (HLA). The techniques developed to produce the geoacoustic inversion are described, and an efficient method for geoacoustic inversion with broadband beam cross-spectral data is demonstrated. The performance of cost functions that involve coherent or incoherent sums over frequency and one or multiple time segments is discussed. Successful inversions for the first sediment layer sound speed and thickness and some of the parameters for the deeper layers were obtained with the surface ship at nominal ranges of 20, 30, or 50 water depths. The data for these inversions were beam cross-spectra from four subapertures of the HLA spanning a little more than two water depths. The subaperture beams included ten frequencies equally spaced in the 120–200 Hz band. The values of the geoacoustic parameters from the inversions are validated by comparisons with geophysical observations and with the parameter values from previous inversions by other invesigators, and by comparing transmission loss (TL) measured in the experiment with modeled TL based on the inverted geoacoustic parameters.

1.
M. D.
Collins
,
W. A.
Kuperman
, and
H.
Schmidt
, “
Nonlinear inversion for ocean-bottom properties
,”
J. Acoust. Soc. Am.
92
,
2770
2783
(
1992
). The references in this article summarize the earliest work on the topic.
2.
D. F.
Gingras
and
P.
Gerstoft
, “
Inversion for geometric and geoacoustic parameters in shallow water: Experimental results
,”
J. Acoust. Soc. Am.
97
,
3589
3598
(
1995
). This article summarizes the early work on combining localization with geoacoustic inversion.
3.
D. P.
Knobles
and
R. A.
Koch
, “
A time series analysis of sound propagation in a strongly multipath shallow water environment with an adiabatic normal mode approach
,”
IEEE J. Ocean. Eng.
21
,
1
13
(
1996
).
4.
Special Issue: Benchmarking Geoacoustic Inversion Methods
,”
J. Comput. Acoust.
6
,
83
97
(
1998
). Papers from the Geoacoustic Inversion Workshop held in Vancouver, BC, 24–26 June, 1997. These articles survey then state-of-the-art geoacoustic inversion for range invariant environments with applications to simulated data.
5.
M.
Musil
,
N. R.
Chapman
, and
M. J.
Wilmut
, “
Range-dependent matched-field inversion of SWellEX-96 data using the downhill simplex algorithm
,”
J. Acoust. Soc. Am.
105
,
3270
3281
(
1999
). This article summarizes the early work on geoacoustic inversion for range-dependent environments.
6.
M. R.
Fallat
,
P. L.
Nielsen
, and
S. E.
Dosso
, “
Hybrid geoacoustic inversion of broadband Mediterranean Sea data
,”
J. Acoust. Soc. Am.
107
,
1967
1977
(
2000
).
7.
P.
Pignot
and
N. R.
Chapman
, “
Tomographic inversion of geoacoustic properties in a range-dependent shallow-water environment
,”
J. Acoust. Soc. Am.
110
,
1338
1348
(
2001
).
8.
S. E.
Dosso
and
P. L.
Nielsen
, “
Quantifying uncertainty in geoacoustic inversion. II. Application to broadband, shallow-water data
,”
J. Acoust. Soc. Am.
111
,
143
159
(
2002
).
9.
D. P.
Knobles
,
R. A.
Koch
,
L. A.
Thompson
,
K. C.
Focke
, and
P. E.
Eisman
, “
Broadband sound propagation in shallow water and geoacoustic inversion
,”
J. Acoust. Soc. Am.
113
,
205
222
(
2003
).
10.
Special Issue on Geoacoustic Inversion in Range-Dependent Shallow-Water Environments
,”
IEEE J. Ocean. Eng.
28
, (
2003
).
Papers on state-of-the-art applications with simulated data from the Geoacoustic Inversion Technology Workshop held in Gulfport, MS, 14–17 May, 2001.
11.
H. L. Berryhill, Jr., Late Quaternary Facies and Structure, Northern Gulf of Mexico, AAPG Studies in Geology Vol. 23 (The American Association of Petroleum Geologists, Tulsa, Oklahoma, 1986).
12.
E. K.
Westwood
,
C. T.
Tindle
, and
N. R.
Chapman
, “
A normal mode model for acousto-elastic ocean environments
,”
J. Acoust. Soc. Am.
100
,
3631
3645
(
1996
).
13.
W. L.
Goffe
,
G. D.
Ferrier
, and
J.
Rogers
, “
Global optimization of statistical functions with simulated annealing
,”
J. Econometr.
60
,
65
99
(
1994
).
14.
R. A.
Koch
,
D. P.
Knobles
,
T. B.
Neilsen
, and
M. S.
Haire
, “
Geoacoustic inversion using surface ship sources and HLA beam data
,”
J. Acoust. Soc. Am.
109
,
2394
(
2001
).
15.
D. P. Knobles, R. A. Koch, and M. S. Haire, “Geoacoustic inversion studies,” Proceedings of MTS/IEEE Oceans 2001 Conference, Honolulu, HA, 2001, pp. 737–744.
16.
L. N.
Frazer
and
X.
Sun
, “
New objective functions for waveform inversion
,”
Geophysics
63
,
213
222
(
1998
).
17.
T. C.
Yang
and
T.
Yates
, “
Matched-beam processing: Application to a horizontal line array in shallow water
,”
J. Acoust. Soc. Am.
104
,
1316
1330
(
1998
).
18.
H.
Cox
,
R. M.
Zeskind
, and
M.
Myers
, “
A subarray approach to matched field processing
,”
J. Acoust. Soc. Am.
87
,
168
178
(
1990
).
19.
E. K.
Westwood
, “
Broadband matched-field source localization
,”
J. Acoust. Soc. Am.
91
,
2777
2789
(
1992
).
20.
D. P.
Knobles
and
S. K.
Mitchell
, “
Broadband localization by matched-fields in range and bearing in shallow water
,”
J. Acoust. Soc. Am.
96
,
1813
1820
(
1994
).
21.
H.
Cox
,
R. M.
Zeskind
, and
M. M.
Owen
, “
Robust adaptive beamform-ing
,”
IEEE Trans. Acoust., Speech, Signal Process.
ASSP-35
,
1365
1376
(
1987
).
22.
T. R.
Messerschmitt
and
R. A.
Gramann
, “
Evaluation of the dominant mode rejection beamformer using reduced integration times
,”
IEEE J. Ocean. Eng.
22
,
385
392
(
1997
).
23.
T. M.
Redheendran
, “
Initial evaluation of the dominant mode rejection beamformer
,”
J. Acoust. Soc. Am.
104
,
1331
1344
(
1998
).
24.
M. D.
Collins
and
W. A.
Kuperman
, “
Focalization: Environmental focusing and source localization
,”
J. Acoust. Soc. Am.
90
,
1410
1422
(
1991
).
25.
L. A.
Rubano
, “
Acoustic propagation in shallow water over a low-velocity bottom
,”
J. Acoust. Soc. Am.
67
,
1608
1613
(
1980
).
26.
J. F.
Lynch
,
S. D.
Rajan
, and
G. V.
Frisk
, “
A comparison of broadband and narrow-band inversions for bottom geoacoustic properties at a site near Corpus Christi, Texas
,”
J. Acoust. Soc. Am.
89
,
648
665
(
1988
).
This content is only available via PDF.
You do not currently have access to this content.