Simulations of iterative transmit-beam aberration correction using a time-delay and amplitude filter have been performed to study the convergence of such a process. Aberration in medical ultrasonic imaging is usually modeled by arrival-time and amplitude fluctuations concentrated on the transducer array. This is an approximation of the physical aberration process, and may be applied to correct the transmitted signal using a time-delay and amplitude filter. Estimation of such a filter has proven difficult in the presence of severe aberration. Presented here is an iterative approach, whereby a filter estimate is applied to correct the transmit-beam. This beam induces acoustic backscatter better suited for arrival-time and amplitude estimation, thus facilitating an improved filter estimate. Two correlation-based methods for estimating arrival-time and amplitude fluctuations in received echoes from random scatterers were employed. Aberration was introduced using eight models emulating aberration produced by the human abdominal wall. Results show that only a few iterations are needed to obtain corrected transmit-beam profiles comparable to those of an ideal aberration correction filter. Furthermore, a previously developed focusing criterion is found to quantify the convergence accurately.

1.
S. W.
Flax
and
M.
O’Donnell
, “
Phase-aberration correction using signals from point reflectors and diffuse scatterers: Basic principles
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
35
,
758
767
(
1988
).
2.
M.
O’Donnell
and
S. W.
Flax
, “
Phase-aberration correction using signals from point reflectors and diffuse scatterers: Measurements
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
35
,
768
774
(
1988
).
3.
L.
Hinkelman
,
T. D.
Mast
,
L. A.
Metlay
, and
R. C.
Waag
, “
The effect of abdominal wall morphology on ultrasonic pulse distortion. Part I. Measurements
,”
J. Acoust. Soc. Am.
104
,
3635
3649
(
1998
).
4.
T. D.
Mast
,
L. M.
Hinkelman
,
M. J.
Orr
, and
R. C.
Waag
, “
The effect of abdominal wall morphology on ultrasonic pulse distortion. Part II. Simulations
,”
J. Acoust. Soc. Am.
104
,
3651
3664
(
1998
).
5.
S.-E.
Måsøy
,
T. F.
Johansen
, and
B.
Angelsen
, “
Correction of ultrasonic wave aberration with a time delay and amplitude filter
,”
J. Acoust. Soc. Am.
113
,
2009
2020
(
2003
).
6.
M.
Karaman
,
A.
Atalar
,
H.
Köymen
, and
M.
O’Donnell
, “
A phase aberration correction method for ultrasound imaging
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
40
,
275
282
(
1993
).
7.
S.
Krishnan
,
K. W.
Rigby
, and
M.
O’Donnell
, “
Improved estimation of phase aberration profiles
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
44
,
701
713
(
1997
).
8.
S.
Krishnan
,
K. W.
Rigby
, and
M.
O’Donnell
, “
Efficient parallel adaptive aberration correction
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
45
,
691
703
(
1998
).
9.
K. W. Rigby, C. L. Chalek, B. H. Haider, R. S. Lewandowski, L. S. S. M. O’Donnell, and D. G. Wildes, “Improved in vivo abdominal image quality using real-time estimation and correction of wavefront arrival time errors,” IEEE Ultrasonics Symposium (IEEE, New York, 2000), Vol. 2, pp. 1645–1653.
10.
D.-L.
Liu
and
R. C.
Waag
, “
Correction of ultrasonic wavefront distortion using backpropagation and a reference waveform method for time-shift compensation
,”
J. Acoust. Soc. Am.
96
,
649
660
(
1994
).
11.
R.
Mallart
and
M.
Fink
, “
Adaptive focusing in scattering media through sound-speed inhomogeneities: The van Cittert–Zernike approach and focusing criterion
,”
J. Acoust. Soc. Am.
96
,
3721
3732
(
1994
).
12.
G. C.
Ng
,
S. S.
Worrel
,
P. D.
Freiburger
, and
G. E.
Trahey
, “
A comparative evaluation of several algorithms for phase aberration correction
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
41
,
631
643
(
1994
).
13.
A. P. Berkhoff and J. Thijssen, “Correction of concentrated and distributed aberrations in medical ultrasound imaging,” 1996 IEEE Ultrasonics Symp. Proc. (IEEE, New York, 1996), Vol. 2, pp. 1405–1410.
14.
J. C.
Lacefield
and
R. C.
Waag
, “
Spatial coherence analysis applied to aberration correction using a two-dimensional array system
,”
J. Acoust. Soc. Am.
112
,
2558
2566
(
2002
).
15.
S.-E.
Måsøy
,
T.
Varslot
, and
B.
Angelsen
, “
Estimation of ultrasound wave aberration with signals from random scatterers
,”
J. Acoust. Soc. Am.
115
,
2998
3009
(
2004
).
16.
T.
Varslot
,
E.
Mo
,
H.
Krogstad
, and
B.
Angelsen
, “
Eigenfunction analysis of stochastic backscatter for characterization of acoustic aberration in medical ultrasound imaging
,”
J. Acoust. Soc. Am.
115
,
3068
3076
(
2004
).
17.
B. Angelsen, Ultrasound Imaging: Waves, Signals and Signal Processing (Emantec, Trondheim, Norway, 2000), Vol. II, http://www.ultrasoundbook.com.
18.
R.
Mallart
and
M.
Fink
, “
The van Cittert–Zernike theorem in pulse echo measurements
,”
J. Acoust. Soc. Am.
90
,
2718
2727
(
1991
).
19.
T.
Varslot
,
B.
Angelsen
, and
R. C.
Waag
, “
Spectral estimation for characterization of acoustic aberration
,”
J. Acoust. Soc. Am.
116
,
97
108
(
2004
).
20.
M. B. Priestley, Spectral Analysis and Time Series (Academic, New York, 1988).
21.
T. K. Moon and W. C. Stirling, Mathematical Methods and Algorithms for Signal Processing (Prentice–Hall, Upper Saddle River, New Jersey, 2000).
22.
L. F.
Nock
,
G. E.
Trahey
, and
S. W.
Smith
, “
Phase aberration correction in medical ultrasound using speckle brightness as an image quality factor
,”
J. Acoust. Soc. Am.
85
,
1819
1833
(
1989
).
23.
L. M.
Hinkelman
,
D.-L.
Liu
,
L. A.
Metlay
, and
R. C.
Waag
, “
Measurements of ultrasonic pulse arrival time and energy level variations produced by propagation through abdominal wall
,”
J. Acoust. Soc. Am.
95
,
530
541
(
1994
).
24.
S. D.
Silverstein
and
D. P.
Ceperley
, “
Autofocusing in medical ultrasound: The scaled covariance matrix algorithm
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
50
,
795
804
(
2003
).
25.
Q.
Zhu
and
B.
Steinberg
, “
Deaberration of incoherent wavefront distortion: An approach toward inverse filtering
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
44
,
575
589
(
1997
).
26.
M.
Tanter
,
J.-L.
Thomas
, and
M.
Fink
, “
Time reversal and the inverse filter
,”
J. Acoust. Soc. Am.
108
,
223
234
(
2000
).
27.
T. D.
Mast
,
L. M.
Hinkelman
,
M. J.
Orr
,
V. W.
Sparrow
, and
R. C.
Waag
, “
Simulation of ultrasonic pulse propagation through the abdominal wall
,”
J. Acoust. Soc. Am.
102
,
1177
1190
(
1997
).
28.
W. F.
Walker
and
G. E.
Trahey
, “
A fundamental limit on the performance of correlation based phase correction and flow estimation techniques
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
41
,
644
654
(
1994
).
29.
W. F.
Walker
and
G. E.
Trahey
, “
A fundamental limit on delay estimation using partially correlated speckle signals
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
42
,
301
308
(
1995
).
This content is only available via PDF.
You do not currently have access to this content.