Previous studies showed that ultrasound can mechanically remove tissue in a localized, controlled manner. Moreover, enhanced acoustic backscatter is highly correlated with the erosion process. “Initiation” and “extinction” of this highly backscattering environment were studied in this paper. The relationship between initiation and erosion, variability of initiation and extinction, and effects of pulse intensity and gas saturation on time to initiation (initiation delay time) were investigated. A 788-kHz single-element transducer was used. Multiple pulses at a 3-cycle pulse duration and a 20-kHz pulse repetition frequency were applied. ISPPA values between 1000 and 9000 W/cm2 and gas saturation ranges of 24%–28%, 39%–49%, and 77%–81% were tested. Results show the following: (1) without initiation, erosion was never observed; (2) initiation and extinction of the highly backscattering environment were stochastic in nature and dependent on acoustic parameters; (3) initiation delay times were shorter with higher intensity and higher gas saturation (e.g., the mean initiation delay time was 66.9 s at ISPPA of 4000 W/cm2 and 3.6 ms at ISPPA of 9000 W/cm2); and (4) once initiated by high-intensity pulses, the highly backscattering environment and erosion can be sustained using a significantly lower intensity than that required to initiate the process.

1.
AIUM (1998). Acoustic Output Measurement Standard for Diagnostic Ultrasound Equipment, AIUM/NEMA.
2.
Apfel
,
R. E.
, and
Holland
,
C. K.
(
1991
). “
Gauging the likelihood of cavitation from short-pulse, low-duty cycle diagnostic ultrasound
,”
Ultrasound Med. Biol.
17
,
179
185
.
3.
Atchley
,
A. A.
(
1988
). “
Thresholds for cavitation produced in water by pulsed ultrasound
,”
Ultrasonics
26
,
xxx
xxx
.
4.
Belahadji
,
B.
,
Franc
,
J. P.
, and
Michel
,
J. M.
(
1991
). “
A statistical analysis of cavitation erosion pits
,”
J. Fluids Eng.
113
,
700
706
.
5.
Bouakaz
,
A.
,
Frinking
,
P. J. A.
,
Jong
,
N. D.
, and
Bom
,
N.
(
1999
). “
Noninvasive measurement of the hydrostatic pressure in a fluid-filled cavity based on the disappearance time of micrometer-sized free gas bubbles
,”
Ultrasound Med. Biol.
25
,
1407
1415
.
6.
Calabrese, A. M. (1996). Ph.D. thesis: “Threshold measurements and production rates for inertial cavitation due to pulsed, megahertz-frequency ultrasound,” Chaps. 5 and 6. The University of Mississippi.
7.
Chakravarty
,
A.
, and
Walton
,
A. J.
(
2001
). “
Light emission from collapsing superheated steam bubbles in water
,”
J. Lumin.
92
,
27
33
.
8.
Chen
,
W. S.
,
Matula
,
T. J.
, and
Crum
,
L. A.
(
2002
). “
The disappearance of ultrasound contrast bubbles: Observations of bubble dissolution and cavitation nucleation
,”
Ultrasound Med. Biol.
28
,
793
803
.
9.
Child
,
S. Z.
,
Hartman
,
C. L.
,
Schery
,
L. A.
, and
Carstensen
,
E. L.
(
1990
). “
Lung damage from exposure to pulsed ultrasound
,”
Ultrasound Med. Biol.
16
,
817
825
.
10.
Dalecki
,
D.
,
Raeman
,
C. H.
,
Child
,
S. Z.
, and
Carstensen
,
E. L.
(
1995
). “
Intestinal hemorrhage from exposure to pulsed ultrasound
,”
Ultrasound Med. Biol.
21
,
1067
1072
.
11.
Dunn
,
F.
, and
Fry
,
F. J.
(
1971
). “
Ultrasonic threshold dosages for the mammalian central nervous system
,”
IEEE Trans. Biomed. Eng.
18
,
253
256
.
12.
Everbach
,
E. C.
,
Makin
,
I.
,
Azadniv
,
M.
, and
Meltzer
,
R. S.
(
1997
). “
Correlation of ultrasound-induced hemolysis with cavitation detector output in vitro
,”
Ultrasound Med. Biol.
23
,
619
624
.
13.
Fairbank
,
W. M.
, and
Scully
,
M. O.
(
1977
). “
A new non-invasive technique for cardiac pressure measurement resonant scattering of ultrasound from bubble
,”
IEEE Trans. Biomed. Eng.
BME-24
,
107
110
.
14.
Frizzell
,
L. A.
,
Chen
,
E.
, and
Lee
,
C.
(
1994
). “
Effects of pulsed ultrasound on the mouse neonate: Hind limb paralysis and lung hemorrhage [Comment]
,”
Ultrasound Med. Biol.
20
,
53
63
.
15.
Fry
,
F. J.
,
Sanghvi
,
N. T.
,
Foster
,
R. S.
,
Bihrle
,
R.
, and
Hennige
,
C.
(
1995
). “
Ultrasound and microbubbles: Their generation, detection, and potential utilization in tissue and organ therapy—experimental
,”
Ultrasound Med. Biol.
21
,
1227
1237
.
16.
Holland
,
C. K.
, and
Apfel
,
R. E.
(
1990
). “
Thresholds for transient cavitation produced by pulsed ultrasound in a controlled nuclei environment
,”
J. Acoust. Soc. Am.
88
,
2059
2069
.
17.
Jarman
,
P. D.
, and
Taylor
,
K. J.
(
1965
). “
Light flashes and shocks from a cavitation flow
,”
Br. J. Appl. Phys.
16
,
675
682
.
18.
Jochle
,
K.
,
Debus
,
J.
,
Lorenz
,
W. J.
, and
Huber
,
P.
(
1996
). “
A new method of quantitative cavitation assessment in the field of a lithotripter
,”
Ultrasound Med. Biol.
22
,
329
338
.
19.
Kripfgans
,
O. D.
,
Fowlkes
,
J. B.
,
Miller
,
D. L.
,
Eldevik
,
O. P.
, and
Carson
,
P. L.
(
2000
). “
Acoustic droplet vaporization for therapeutic and diagnostic applications
,”
Ultrasound Med. Biol.
26
,
1177
1189
.
20.
Leighton, T. G. (1994). The Acoustic Bubble (Academic, London).
21.
Lush
,
P. A.
, and
Angell
,
B.
(
1984
). “
Correlation of cavitation erosion and sound pressure level
,”
J. Fluids Eng.
106
,
347
351
.
22.
Madanshetty
,
S. I.
,
Roy
,
R. A.
, and
Apfel
,
R. E.
(
1991
). “
Acoustic microcavitation: Its active and passive acoustic detection
,”
J. Acoust. Soc. Am.
90
,
1515
1526
.
23.
Matsumoto, Y., Yoshizawa, S., and Teiichiro, I. (2002). “Dynamics of bubble cloud in focused ultrasound,” International Symposium on Therapeutic Ultrasound, Seattle, WA, pp. 290–299.
24.
Messino
,
C. D.
,
Sette
,
D.
, and
Wanderlingh
,
F.
(
1963
). “
Statistical approach to ultrasonic cavitation
,”
J. Acoust. Soc. Am.
35
,
1575
1583
.
25.
Ohl
,
C. D.
(
2000
). “
Luminescence from acoustic-driven laser-induced cavitation bubbles
,”
Phys. Rev. E
61
,
1497
1500
.
26.
Ohl
,
C. D.
,
Lindau
,
O.
, and
Lauterborn
,
W.
(
1998
). “
Luminescence from spherically and aspherically collapsing laser induced bubbles
,”
Phys. Rev. Lett.
80
,
393
396
.
27.
Phillip
,
A.
, and
Lauterborn
,
W.
(
1998
). “
Cavitation erosion by single laser-produced bubbles
,”
J. Fluid Mech.
361
,
75
116
.
28.
Phillip, A., and Ohl, C. D. (1995). “Single bubble erosion on a solid surface,” Interational Symposium on Cavitation, CAV’95, Deuville, France, 297–303.
29.
Poliachik
,
S. L.
(
1999
). “
Effect of high-intensity focused ultrasound on whole blood with and without microbubble contrast agent
,”
Ultrasound Med. Biol.
25
,
991
998
.
30.
Roy, R. A., Church, C. C., and Calabrese, A. (1990a). “Cavitation produced by short pulses of ultrasound,” in Frontiers of Nonlinear Acoustics, 12 ISNA, edited by D. T. Blackstock and M. F. Hamilton (Elsevier, Amsterdam), pp. 476–491.
31.
Roy
,
R. A.
,
Madanshetty
,
S. I.
, and
Apfel
,
R. E.
(
1990b
). “
An acoustic backscattering technique for the detection of transient cavitation produced by microsecond pulses of ultrasound
,”
J. Acoust. Soc. Am.
87
,
2451
2458
.
32.
Roy
,
R. A.
,
Atchley
,
A. A.
,
Crum
,
L. A.
,
Fowlkes
,
J. B.
, and
Reidy
,
J. J.
(
1985
). “
A precise technique for the measurement of acoustic cavitation thresholds and some preliminary results
,”
J. Acoust. Soc. Am.
78
,
1799
1805
.
33.
Shi
,
W. T.
,
Forsberg
,
F.
,
Tornes
,
A.
,
Ostensen
,
J.
, and
Goldberg
,
B. B.
(
2000
). “
Destruction of contrast microbubbles and the association with inertial cavitation
,”
Ultrasound Med. Biol.
26
,
1009
1019
.
34.
Smith
,
N. B.
, and
Hynynen
,
K.
(
1998
). “
The feasibility of using focused ultrasound for transmyocardial revascularization
,”
Ultrasound Med. Biol.
24
,
1045
1054
.
35.
Tomlinson
,
W. J.
, and
Matthews
,
S. J.
(
1994
). “
Cavitation erosion of aluminium alloys
,”
J. Mater. Sci.
29
,
1101
1108
.
36.
Tran, B. C. (2003). “In Vivo Comparison of Multiple Pulse and CW strategies for Microbubble-Enhanced Ultrasound Therapy,” IEEE Ultrasonics Symposium, Hawaii, pp. 1J–4.
37.
Wetheril, G. B., and Brown, D. W. (1991). Statistical Process Control Theory and Practice (Chapman and Hall, London).
38.
Xu
,
Z.
(
2004
). “
Controlled ultrasound tissue erosion
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
51
,
726
736
.
This content is only available via PDF.
You do not currently have access to this content.