Scattering of ultrasonic waves in polycrystals with texture is studied in this article. The attenuations of the three wave modes are determined as a function of dimensionless frequency and propagation direction, respectively, for given orientation distribution coefficients (ODCs). The calculation is done in the case of a statistically orthorhombic sample made up of cubic crystallites. The wave propagation and scattering model is formulated by the Dyson equation using an anisotropic Green’s function approach. Within the limits of the first-order smoothing approximation, the Dyson equation is solved in the spatial Fourier transform domain. The results presented are shown to be directional dependent, frequency dependent, and especially dependent on the texture coefficients (ODCs) for the quasilongitudinal and two quasishear waves. The theoretical results presented may be used to improve the understanding of the microstructure during recrystallization processes.

1.
Ahmed, S., and Thompson, R. B. (1992). “Effects of preferred grain orientation and grain elongation on ultrasonic wave propagation in stainless steel,” in Review of Progress in Quantitative NDE, edited by D. O. Thompson and D. E. Chimenti (Plenum, New York), Vol. 11, pp. 1999–2006.
2.
Ahmed
,
S.
, and
Thompson
,
R. B.
(
1996
). “
Propagation of elastic waves in equiaxed stainless-steel polycrystals with aligned [001] axes
,”
J. Acoust. Soc. Am.
99
,
2086
2096
.
3.
Bunge, H. J. (1982). Texture Analysis in Materials Science: Mathematical Methods (Butterworths, London).
4.
Frisch, U. (1968). “Wave propagation in random media,” in Probabilistic Methods in Applied Mathematics, edited by A. T. Barucha-Reid (Academic, New York), Vol. 1, pp. 75–198.
5.
Hirao
,
M.
,
Aoki
,
K.
, and
Fukuoka
,
H.
(
1987
). “
Texture of polycrystalline metals characterized by ultrasonic velocity measurements
,”
J. Acoust. Soc. Am.
81
,
1434
1440
.
6.
Hirsekorn
,
S.
(
1982
). “
The scattering of ultrasonic waves by polycrystals
,”
J. Acoust. Soc. Am.
72
,
1021
1031
.
7.
Hirsekorn
,
S.
(
1983
). “
The scattering of ultrasonic waves by polycrystals. II. Shear waves
,”
J. Acoust. Soc. Am.
73
,
1160
1163
.
8.
Hirsekorn
,
S.
(
1985
). “
The scattering of ultrasonic waves in polycrystalline materials with texture
,”
J. Acoust. Soc. Am.
77
,
832
843
.
9.
Hirsekorn
,
S.
(
1986
). “
Directional dependence of ultrasonic propagation in textured polycrystals
,”
J. Acoust. Soc. Am.
79
,
1269
1279
.
10.
Johnson
,
G. C.
(
1985
). “
Acoustoelastic response of a polycrystalline aggregates with orthotropic texture
,”
J. Appl. Mech.
52
,
659
663
.
11.
Karal
,
F. C.
, and
Keller
,
J. B.
(
1964
). “
Elastic, electromagnetic, and other waves in a random medium
,”
J. Math. Phys.
5
,
537
547
.
12.
Li
,
Y.
, and
Thompson
,
R. B.
(
1990
). “
Relations between elastic constants Cij and texture parameters for hexagonal materials
,”
J. Appl. Phys.
67
,
2663
2665
.
13.
Roe
,
R.-J.
(
1965
). “
Description of crystallite orientation in polycrystalline materials. III. General solution to pole figure inversion
,”
J. Appl. Phys.
36
,
2024
2031
.
14.
Roe
,
R.-J.
(
1966
). “
Inversion of pole figures for materials having cubic crystal symmetry
,”
J. Appl. Phys.
37
,
2069
2072
.
15.
Sayers
,
C. M.
(
1982
). “
Ultrasonic velocities in anisotropic polycrystalline aggregates
,”
J. Phys. D: Appl. Phys.
15
,
2157
2167
.
16.
Stanke
,
F. E.
, and
Kino
,
G. S.
(
1984
). “
A unified theory for elastic wave propagation in polycrystalline materials
,”
J. Acoust. Soc. Am.
75
,
665
681
.
17.
Turner
,
J. A.
(
1999
). “
Elastic wave propagation and scattering in heterogeneous, anisotropic media: Textured polycrystalline materials
,”
J. Acoust. Soc. Am.
106
,
541
552
.
18.
Weaver
,
R. L.
(
1990
). “
Diffusion of ultrasound in polycrystals
,”
J. Mech. Phys. Solids
38
,
55
86
.
19.
Yang, L. (2003). “Scattering of elastic waves in statistically anisotropic media,” Ph.D. thesis, University of Nebraska.
This content is only available via PDF.
You do not currently have access to this content.