Spherical microphone arrays have been recently studied for sound analysis and sound recordings, which have the advantage of spherical symmetry facilitating three-dimensional analysis. This paper complements the recent microphone array design studies by presenting a theoretical analysis of plane-wave decomposition given the sound pressure on a sphere. The analysis uses the spherical Fourier transform and the spherical convolution, where it is shown that the amplitudes of the incident plane waves can be calculated as a spherical convolution between the pressure on the sphere and another function which depends on frequency and the sphere radius. The spatial resolution of plane-wave decomposition given limited bandwidth in the spherical Fourier domain is formulated, and ways to improve the computation efficiency of plane-wave decomposition are introduced. The paper concludes with a simulation example of plane-wave decomposition.

1.
E. G. Williams, Fourier Acoustics: Sound Radiation and Nearfield Acoustical Holography (Academic, New York, 1999).
2.
E.
Hulsebos
,
D.
De Vries
, and
E.
Bourdillat
, “
Improved microphone array configurations for auralizations of sound fields by wave-field synthesis
,”
J. Audio Eng. Soc.
50
,
779
790
(
2002
).
3.
H. F.
Silverman
,
W. R.
Patterson
III
, and
J. L.
Flanagan
, “
The huge microphone array
,”
IEEE Concurrency
6
,
36
46
(
1998
).
4.
H. F.
Silverman
,
W. R.
Patterson
III
, and
J.
Sachar
, “
Factors affecting the performance of large-aperture microphone arrays
,”
J. Acoust. Soc. Am.
111
,
2140
2157
(
2002
).
5.
A. J.
Berkhout
,
D.
De Vries
, and
P.
Vogel
, “
Acoustic control by wave field synthesis
,”
J. Acoust. Soc. Am.
93
,
2764
2778
(
1993
).
6.
A. J.
Berkhout
,
D.
De Vries
, and
J. J.
Sonke
, “
Array technology for acoustic wave field analysis in enclosures
,”
J. Acoust. Soc. Am.
102
,
2757
2770
(
1997
).
7.
H.
Nomura
and
H.
Miyata
, “
Microphone arrays for improving speech intelligibility in a reverberant or noisy space
,”
J. Audio Eng. Soc.
41
,
771
781
(
1993
).
8.
J.
Meyers
, “
Beamforming for a circular microphone array mounted on spherical shaped objects
,”
J. Acoust. Soc. Am.
15
,
636
651
(
2001
).
9.
J. Meyers and G. W. Elko, “A highly scalable spherical microphone array based on an orthonormal decomposition of the soundfield,” Proceedings of ICASSP 2002, Vol. II, pp. 1781–1784.
10.
T. D. Abhayapala and D. B. Ward, “Theory and design of high order sound field microphones using spherical microphone array,” Proceedings of ICASSP 2002, Vol. II, pp. 1949–1952.
11.
J.
Meyers
and
G. W.
Elko
, “
A spherical microphone array for spatial sound recordings
,”
J. Acoust. Soc. Am.
111
,
2346
(
2002
).
12.
B. N.
Gover
,
J. G.
Ryan
, and
M. R.
Stinson
, “
Microphone array measurement system for analysis of directional and spatial variations of sound fields
,”
J. Acoust. Soc. Am.
112
,
1980
1991
(
2002
).
13.
G.
Weinreich
and
E.
Arnold
, “
Method for acoustic radiation fields
,”
J. Acoust. Soc. Am.
68
,
404
411
(
1980
).
14.
B. Rafaely, “Decomposition of reverberant sound fields into plane waves using microphone arrays,” Presented at the 5th International Workshop on microphone array systems, theory and practice, Erlangen-Nuremberg, Germany, 15–16 May, 2003.
15.
B.
Rafaely
, “
Plane-wave decomposition by spherical-convolution microphone array
,”
J. Acoust. Soc. Am.
115
,
2578
(
2004
).
16.
B. Rafaely, Design and analysis of spherical microphone arrays (unpublished).
17.
J. R.
Driscoll
and
D. M.
Healy
, Jr.
, “
Computing Fourier transforms and convolutions on the 2-sphere
,”
Adv. Appl. Math.
15
,
202
250
(
1994
).
18.
G. Arfken and H. J. Weber, Mathematical Methods for Physicists, 5th ed. (Academic, San Diego, 2001).
19.
Wolfram Research on-line publication of mathematical functions, http://www.function.wolfram.com (2003).
20.
B. D.
Wandelt
and
K. M.
Gorski
, “
Fast convolution on the sphere
,”
Phys. Rev. D
63
,
123002
(
2001
).
21.
I. S. Gradshteyn and I. M. Ryzhik, Tables of Integrals, Series, and Products (Academic, New York, 1980).
22.
A. V. Oppeneim, A. S. Willsky, and S. H. Nawab, Signals and Systems (Prentice Hall, New Jersey, 1997).
23.
V. I. Krylov, Approximate Calculation of Integrals (McMillan, New York, 1962). Translated from Russian by A. H. Stroud.
24.
R. H.
Hardin
and
N. J. A.
Sloane
, “
McLaren’s improved snub cube and other new spherical designs in three dimensions
,”
Discrete Comput. Geom.
15
,
429
441
(
1996
). See also web site at http://www.research.att-com/njas/sphdesigns/
25.
M. J.
Mohlenkamp
, “
A fast transform for spherical harmonics
,”
J. Fourier Analysis Appl.
5
,
159
184
(
1999
).
This content is only available via PDF.
You do not currently have access to this content.