In an open cycle traveling wave thermoacoustic engine, hot gas steadily flows into the hot side of the regenerator, replacing the hot heat exchanger as the primary energy source for the engine. In such an engine, interactions between the acoustic, convective, conductive and thermoacoustic energy fluxes facilitate conversion of the input thermal energy into acoustic energy. This study describes the energy flux interactions throughout the engine, thus clarifying the important role of the mean temperature difference that exists between the mean flow of hot gas and the hot-side regenerator interface in the open cycle engine. Furthermore, this study derives an optimal regenerator interface temperature that maximizes the acoustic power output of the engine for a given thermal energy input. The acoustic power output and thermal efficiency of the open cycle engine are compared to those in a closed cycle engine in which a crossflow heat exchanger is used to supply the required heat input. By accounting for the effectiveness of the heat exchanger, it is shown that the open cycle has the potential to achieve higher efficiencies than the closed cycle in converting the thermal energy in a stream of gas into acoustic energy.

1.
R. S.
Reid
,
W. C.
Ward
, and
G. W.
Swift
, “
Cyclic thermodynamics with open flow
,”
Phys. Rev. Lett.
80
,
4617
4620
(
1998
).
2.
R. S.
Reid
and
G. W.
Swift
, “
Experiments with a flow-through thermoacoustic refrigerator
,”
J. Acoust. Soc. Am.
108
,
2835
2842
(
2000
).
3.
S.
Backhaus
and
G. W.
Swift
, “
A thermoacoustic-Stirling heat engine: Detailed study
,”
J. Acoust. Soc. Am.
107
,
3148
3166
(
2000
).
4.
D. Gedeon, “DC gas flows in Stirling and pulse-tube cryocoolers,” Cryocoolers 9, edited by R. G. Ross, Ed. (Plenum, New York, 1997), pp. 385–392.
5.
V.
Gusev
,
S.
Job
,
H.
Bailliet
,
P.
Lotton
, and
M.
Bruneau
, “
Acoustic streaming in annular thermoacoustic prime-movers
,”
J. Acoust. Soc. Am.
108
,
934
945
(
2000
).
6.
S.
Job
,
V.
Gusev
,
P.
Lotton
, and
M.
Bruneau
, “
Acoustic streaming measurements in annular thermoacoustic engines
,”
J. Acoust. Soc. Am.
113
,
1892
1899
(
2003
).
7.
Y.
Ueda
,
T.
Biwa
,
U.
Mizutani
, and
T.
Yazaki
, “
Experimental studies of a thermoacoustic Stirling prime mover and its application to a cooler
,”
J. Acoust. Soc. Am.
115
,
1134
1141
(
2004
).
8.
H.
Bailliet
,
V.
Gusev
,
R.
Raspet
, and
R. A.
Hiller
, “
Acoustic streaming in closed thermoacoustic devices
,”
J. Acoust. Soc. Am.
110
,
1808
1821
(
2001
).
9.
D. L.
Gardner
and
G. W.
Swift
, “
A cascade thermoacoustic engine
,”
J. Acoust. Soc. Am.
114
,
1905
1919
(
2003
).
10.
G. W.
Swift
,
D. L.
Gardner
, and
S.
Backhaus
, “
Acoustic recovery of lost power in pulse tube refrigerators
,”
J. Acoust. Soc. Am.
105
,
711
724
(
1999
).
11.
I.
Charles
,
L.
Duband
, and
A.
Ravex
, “
Permanent flow in low and high frequency pulse tube coolers—experimental results
,”
Cryogenics
39
,
777
782
(
1999
).
12.
R.
Waxler
, “
Stationary velocity and pressure gradients in a thermoacoustic stack
,”
J. Acoust. Soc. Am.
109
,
2739
2750
(
2001
).
13.
P. H.
Ceperley
, “
A pistonless Stirling engine—The traveling wave heat engine
,”
J. Acoust. Soc. Am.
66
,
1508
1513
(
1979
).
14.
P. H.
Ceperley
, “
Gain and efficiency of a short traveling wave heat engine
,”
J. Acoust. Soc. Am.
77
,
1239
1244
(
1985
).
15.
N. T.
Weiland
and
B. T.
Zinn
, “
Open cycle traveling wave thermoacoustics: Mean temperature difference at the regenerator interface
,”
J. Acoust. Soc. Am.
114
,
2791
2798
(
2003
).
16.
G. W. Swift, Thermoacoustics: A Unifying Perspective for Some Engines and Refrigerators (Acoustical Society of America, Melville, NY, 2002).
17.
N.
Rott
, “
Thermally driven acoustic oscillations, Part III: Second order heat flux
,”
Z. Angew. Math. Phys.
26
,
43
49
(
1975
).
18.
J. H.
Xiao
, “
Thermoacoustic theory for cyclic flow regenerators. Part I: fundamentals
,”
Cryogenics
32
,
895
901
(
1992
).
19.
N. T. Weiland, B. T. Zinn, and G. W. Swift, “Traveling-wave thermoacoustic engines with internal combustion,” U.S. Patent No. 6,732,515, 11 May 2004.
20.
S.
Backhaus
and
G. W.
Swift
, “
An acoustic streaming instability in thermoacoustic devices utilizing jet pumps
,”
J. Acoust. Soc. Am.
113
,
1317
1324
(
2003
).
21.
A. Bejan, Advanced Engineering Thermodynamics, 2nd ed. (Wiley, New York, 1997).
22.
F. P. Incropera and D. P. DeWitt, Fundamentals of Heat and Mass Transfer, 4th ed. (Wiley, New York, 1996).
This content is only available via PDF.
You do not currently have access to this content.