Optoacoustic (OA) imaging utilizes short laser pulses to create acoustic sources in tissue and time resolved detection of generated pressure profiles for image reconstruction. The ultrasonic transients provide information on the distribution of optical absorption coefficient that can be useful for early cancer diagnostics. In this work a new design of wide-band array transducer is developed and tested. The array consists of 32 focused piezo-elements made of PVDF slabs imposed on a cylindrical surface. A single array element response to an OA signal coming from arbitrarily located point source is investigated theoretically and experimentally. The measured signals correspond well to numerically calculated ones. Focal zone maps of the elements with aperture angles 30° and 60° are presented and discussed; the resolution in direction perpendicular to the imaging plane is determined. Point spread function of the whole array is calculated using experimentally obtained signals from the sources located at different distances from the array. Backprojection algorithm is employed for reconstruction of the optoacoustic images. It is shown that the spatial resolution of the images yielded by the proposed array increases significantly compared to previous transducer designs.

1.
V. E. Gusev and A. A. Karabutov, Laser Optoacoustics (AIP, New York, 1993).
2.
G. J.
Diebold
,
A. C.
Beveridge
, and
T. J.
Hamilton
, “
The photoacoustic effect generated by an incompressible sphere
,”
J. Acoust. Soc. Am.
112
,
1780
1786
(
2002
).
3.
G.
Paltauf
,
H.
Schmidt-Kloiber
, and
M.
Frenz
, “
Photoacoustic waves excited in liquids by fiber-transmitted laser pulses
,”
J. Acoust. Soc. Am.
104
,
890
897
(
1998
).
4.
J. A.
Viator
and
S. A.
Prahl
, “
Photoacoustic imaging of gelatin phantoms using matched field processing
,”
Proc. SPIE
3601
,
276
283
(
1999
).
5.
V. G.
Andreev
,
A. A.
Karabutov
,
S. V.
Solomatin
,
E. V.
Savateeva
,
V. L.
Aleynikov
,
Y. V.
Zhulina
,
R. D.
Fleming
, and
A. A.
Oraevsky
, “
Opto-acoustic tomography of breast cancer with arc-array transducer,” in
Biomedical Optoacoustics
, edited by
A. A.
Oraevsky
, [
Proc. SPIE
3916
,
36
47
(
2000
)].
6.
A.
Oraevsky
and
A.
Karabutov
, “
Ultimate sensitivity of time-resolved opto-acoustic detection
,”
Conference on Biomedical Optoacoustics
[
Proc. SPIE
3916
,
228
239
(
2000
)].
7.
P. C.
Beard
and
T. N.
Mills
, “
2D line-scan photoacoustic imaging of absorbers in a scattering tissue phantom
,”
Proc. SPIE BIOS
4256
,
34
42
(
2001
).
8.
K. P.
Köstli
,
M.
Frenz
,
H.
Bebie
, and
H. P.
Weber
, “
Temporal backward projection of optoacoustic pressure transients using Fourier transform methods
,”
Phys. Med. Biol.
46
,
1863
1872
(
2001
).
9.
Y.
Xu
and
L. V.
Wang
, “
Signal processing in scanning thermoacoustic tomography in biological tissues
,”
Med. Phys.
28
,
1519
1524
(
2001
).
10.
D. W.
Blodgett
, “
Applications of laser-based ultrasonics to the characterization of the internal structure of teeth
,”
J. Acoust. Soc. Am.
114
,
542
549
(
2003
).
11.
J. A.
Viator
,
G.
Au
,
G.
Paltauf
,
S. L.
Jaques
,
S. A.
Prahl
,
H.
Ren
,
Z.
Chen
, and
J. S.
Nelson
, “
Clinical testing of a photoacoustic probe for port wine stain depth determination
,”
Lasers Surg. Med.
30
,
141
148
(
2002
).
12.
F. A. Duck, Physical Properties of Tissue. A Comprehensive Reference Book (Academic, London, 1990).
13.
R. A.
Kruger
,
D. R.
Reinecke
, and
G. A.
Kruger
, “
Thermoacoustic computed tomography-technical considerations
,”
Med. Phys.
26
,
1832
1837
(
1999
).
14.
C. G. A.
Hoelen
,
F. F. M.
de Mul
,
R.
Pongers
, and
A.
Dekker
, “
Three-dimensional photoacoustic imaging of blood vessels in tissue
,”
Opt. Lett.
23
,
648
650
(
1998
).
15.
K. P.
Kostli
and
P. C.
Beard
, “
Two-dimensional photoacoustic imaging by use of Fourier transform image reconstruction and a detector with an anisotropic response
,”
Appl. Opt.
42
,
1899
1908
(
2003
).
16.
A. Biggs, Acoustic Microscopy (Claredon, Oxford, 1992).
17.
V. G.
Andreev
,
A. A.
Karabutov
,
A. E.
Ponomaryov
, and
A. A.
Oraevsky
, “
Detection of optoacoustic transients with a rectangular transducer of finite dimension,” in
Biomedical Optoacoustics III
, edited by
A. A.
Oraevsky
[
Proc. SPIE
4618
,
153
162
(
2002
)].
18.
P. R.
Stepanishen
, “
Acoustic transients from planar axisymmetric vibrators using the impulse function
,”
J. Acoust. Soc. Am.
70
,
1176
1181
(
1981
).
19.
J. A.
Jensen
, “
A new calculation procedure for spatial impulse responses in ultrasound
,”
J. Acoust. Soc. Am.
105
,
3266
3274
(
1999
).
20.
A. A.
Karabutov
,
V. V.
Kozhushko
,
I. M.
Pelivanov
, and
G. S.
Mityurich
, “
Interference of opposing longitudinal acoustic waves in an isotropic absorbing plate and a periodic structure with defects
,”
Acoust. Phys.
47
,
721
726
(
2001
).
21.
G. Kino, Acoustic Waves: Devices, Imaging, and Analog Signal Processing, Prentice-Hall Signal Processing Series (Prentice–Hall, Englewood Cliffs, NJ, 1987).
22.
V. G. Andreev, A. A. Karabutov, and O. V. Rudenko, “Method for calibration of the wide band hydrophones in ultrasonic beams of finite amplitude,” Moscow University Physics Bulletin, Vol. 39, pp. 88–91.
23.
M. B. Vinogradova, O. P. Rudenko, and A. P. Sukhorukov, Theory of Waves, 2nd ed. (Nauka, Moscow, 1990).
24.
V. G.
Andreev
,
D. A.
Popov
,
D. V.
Sushko
,
A. A.
Karabutov
, and
A. A.
Oraevsky
, “
Inverse radon transformation for optoacoustic imaging,” in
Biomedical Optoacoustics II
, edited by
A. A.
Oraevsky
[
Proc. SPIE
4618
,
137
145
(
2002
)].
This content is only available via PDF.
You do not currently have access to this content.