A full electromagnetic approach is employed to study the propagation of SH surface waves on a piezoelectric solid layer superimposed on a piezoelectric solid substrate. The materials of the layered structure allow for dielectric dispersion and two different boundary conditions are considered at the free surface. The dispersion laws for both boundary conditions are derived in a general form and some special cases are discussed. The solutions of the dispersion equations reveal that besides the expected quasi-acoustic dispersive waves, new quasi-electromagnetic modes exist which propagate at high speeds and depths within the layered structure. These dispersive modes occur also in nondispersive materials. Moreover, in addition to subsonic quasi-acoustic modes, accounting for dielectric dispersion gives rise to quasi-acoustic surface modes whose speed exceeds the bulk wave speed of the layer. Special electroelastic surface waves are also discussed which are characterized by the absence of mechanical perturbation in the substrate.

1.
A. A. Maradudin and G. I. Stegeman, “Surface acoustic waves,” in Surface Phonons, edited by W. Kress and F. W. de Wette (Springer-Verlag, Berlin, 1991).
2.
G. A.
Maugin
, “
Elastic surface waves with transverse horizontal polarization
,”
Adv. Appl. Mech.
23
,
373
434
(
1983
).
3.
A. N.
Darinskii
and
V. N.
Lyubimov
, “
Shear interfacial waves in piezoelectrics
,”
J. Acoust. Soc. Am.
106
,
3296
3304
(
1999
).
4.
Z.
Qian
,
F.
Jin
,
Z.
Wang
, and
K.
Kishimoto
, “
Dispersion relations for SH-wave propagation in periodic piezoelectric composite layered structures
,”
Int. J. Eng. Sci.
42
,
673
689
(
2004
).
5.
S.
Li
, “
The electromagneto-acoustic surface wave in a piezoelectric medium: The Bleustein–Gulyaev mode
,”
J. Appl. Phys.
80
,
5264
5269
(
1996
).
6.
M.
Romeo
, “
Non-dispersive and dispersive electromagnetoacoustic SH surface modes in piezoelectric media
,”
Wave Motion
39
,
93
110
(
2004
).
7.
M.
Romeo
, “
Electromagnetoelastic waves at piezoelectric interfaces
,”
Int. J. Eng. Sci.
42
,
753
768
(
2004
).
8.
F.
Jin
,
Z.
Wang
, and
T.
Wang
, “
The Bleustein Gulyaev (B–G) wave in a piezoelectric layered half-space
,”
Int. J. Eng. Sci.
39
,
1271
1285
(
2001
).
9.
G. A. Maugin, Continuum Mechanics of Electromagnetic Solids (North-Holland, Amsterdam, 1988).
10.
A. C. Eringen and G. A. Maugin, Electrodynamics of Continua (Springer-Verlag, New York, 1990), Vol. II.
11.
M.
Fabrizio
and
A.
Morro
, “
Thermodynamics of electromagnetic isothermal systems with memory
,”
J. Non-Equilib. Thermodyn.
22
,
110
128
(
1997
).
12.
J.
Pouget
and
G. A.
Maugin
, “
Bleustein–Gulyaev surface modes in elastic ferroelectrics
,”
J. Acoust. Soc. Am.
69
,
1304
1318
(
1981
).
13.
J.
Pouget
and
G. A.
Maugin
, “
Piezoelectric Rayleigh waves in elastic ferroelectrics
,”
J. Acoust. Soc. Am.
69
,
1319
1325
(
1981
).
This content is only available via PDF.
You do not currently have access to this content.