This paper explores acoustical (or time-dependent) radiosity—a geometrical-acoustics sound-field prediction method that assumes diffuse surface reflection. The literature of acoustical radiosity is briefly reviewed and the advantages and disadvantages of the method are discussed. A discrete form of the integral equation that results from meshing the enclosure boundaries into patches is presented and used in a discrete-time algorithm. Furthermore, an averaging technique is used to reduce computational requirements. To generalize to nonrectangular rooms, a spherical-triangle method is proposed as a means of evaluating the integrals over solid angles that appear in the discrete form of the integral equation. The evaluation of form factors, which also appear in the numerical solution, is discussed for rectangular and nonrectangular rooms. This algorithm and associated methods are validated by comparison of the steady-state predictions for a spherical enclosure to analytical solutions.

1.
L. Cremer and H. A. Müller, Principles and Applications of Room Acoustics, translated by Theodore Schultz (Applied Science Publishers, London, 1982).
2.
H. Kuttruff, Room Acoustics, 4th ed. (Spon Press, London, 2000).
3.
T.
Lewers
, “
A combined beam tracing and radiant exchange computer model of room acoustics
,”
Appl. Acoust.
38
,
161
178
(
1993
).
4.
L. P. Franzoni and J. W. Rouse, “An intensity-based boundary element method for analyzing broadband high frequency sound fields in enclosures,” in Proceedings of the Forum Acusticum Sevilla in Seville, Spain, September 16–20, 2002, by the Spanish Acoustical Society.
5.
I. Ashdown, Radiosity: A Programmer’s Perspective (Wiley, New York, 1994).
6.
M. F. Cohen and J. R. Wallace, Radiosity and Realistic Image Synthesis (Academic, Boston, 1993).
7.
F. X. Sillion and C. Puech, Radiosity and Global Illumination (Morgan Kaufmann, San Fransisco, 1994).
8.
H.
Kuttruff
, “
Simulierte Nachhallkurven in Rechteckräumen mit diffusem Schallfeld,” [Simulated reverberation curves in rectangular rooms with diffuse sound fields]
,
Acustica
25
,
333
342
(
1971
).
9.
H.
Kuttruff
, “
Nachhall und effective Absorption in Räumen mit diffuser Wandreflexion,” [Reverberation and effective absorption in rooms with diffuse wall reflections]
,
Acustica
35
,
141
153
(
1976
).
10.
M. M.
Carroll
and
C. F.
Chien
, “
Decay of reverberant sound in a spherical enclosure
,”
J. Acoust. Soc. Am.
62
,
1442
1446
(
1977
).
11.
M. M.
Carroll
and
R. N.
Miles
, “
Steady-state sound in an enclosure with diffusely reflecting boundary
,”
J. Acoust. Soc. Am.
64
,
1424
1428
(
1978
).
12.
W. B.
Joyce
, “
Exact effect of surface roughness on the reverberation time of a uniformly absorbing spherical enclosure
,”
J. Acoust. Soc. Am.
64
,
1429
1436
(
1978
).
13.
H.
Kuttruff
, “
Energetic sound propagation in rooms
,”
Acust. Acta Acust.
83
,
622
628
(
1997
).
14.
H.
Kuttruff
, “
Stationäre Schallausbreitung in Flachräumen,” [Stationary sound propagation in flat enclosures]
,
Acustica
57
,
62
70
(
1985
).
15.
R. N.
Miles
, “
Sound field in a rectangular enclosure with diffusely reflecting boundaries
,”
J. Sound Vib.
92
,
203
226
(
1984
).
16.
J.
Shi
,
A.
Zhang
,
J.
Encarnação
, and
M.
Göbel
, “
A modified radiosity algorithm for integrated visual and auditory rendering
,”
Comput. Graphics
17
,
633
642
(
1993
).
17.
A.
LeBot
and
A.
Bocquillet
, “
Comparison of an integral equation on energy and the ray-tracing technique in room acoustics
,”
J. Acoust. Soc. Am.
108
,
1732
1740
(
2000
).
18.
J.
Kang
, “
Reverberation in rectangular long enclosures with diffusely reflecting boundaries
,”
Acust. Acta Acust.
88
,
77
87
(
2002
).
19.
M. R.
Schroeder
and
H.
Kuttruff
, “
On frequency response curves in rooms
,”
J. Acoust. Soc. Am.
34
,
76
80
(
1962
).
20.
H.
Kuttruff
, “
A simple iteration scheme for the computation of decay constants in enclosures with diffusely reflecting boundaries
,”
J. Acoust. Soc. Am.
98
,
288
293
(
1995
).
21.
M.
Hodgson
, “
Measurements of the influence of fittings and roof pitch on the sound field in panel-roof factories
,”
Appl. Acoust.
16
,
369
391
(
1983
).
22.
M.
Hodgson
, “
Evidence of diffuse surface reflections in rooms
,”
J. Acoust. Soc. Am.
89
,
756
771
(
1991
).
23.
H.
Kuttruff
and
T.
Strassen
, “
Zur Abhängigkeit des Raumnachhalls von der Wanddiffusität und von der Raumform,” [On the dependence of reverberation time on the “wall diffusion” and on room shape]
,
Acustica
45
,
246
255
(
1980
).
24.
N. C. Baines, “An investigation of the factors which control non-diffuse sound fields in rooms,” Ph.D. thesis, University of Southampton, 1983.
25.
H. Rushmeier, “Extending the radiosity method to transmitting and specularly reflecting surfaces,” Master’s thesis, Cornell University, 1986.
26.
F. X.
Sillion
,
J. R.
Arvo
,
S. H.
Westin
, and
D. P.
Greenberg
, “
A global illumination solution for general reflectance distributions
,”
Comput. Graphics
25
,
187
196
(
1991
).
27.
F.
Sillion
and
C.
Puech
, “
A general two-pass method integrating specular and diffuse reflection
,”
Comput. Graphics
23
,
335
344
(
1989
).
28.
G.
Rougeron
,
F.
Gaudaire
,
Y.
Gabillet
, and
K.
Bouatouch
, “
Simulation of the indoor propagation of a 60 GHz electromagnetic wave with a time-dependent radiosity algorithm
,”
Comput. Graphics
26
,
125
141
(
2002
).
29.
N. Tsingos, “Simulation de champs sonores de haute qualité pour des applications graphiques interactives,” [Simulating high quality dynamic virtual sound fields for interactive graphics applications], Ph.D. thesis, Universite Joseph Fourier-Grenoble 1, 1998 (www-sop.inria.fr/reves/personnel/Nicolas.Tsingos/).
30.
J. R. Howell, A Catalog of Radiation Configuration-Factors (McGraw-Hill, New York, 1982) (www.me.utexas.edu/∼howell/tablecon.html).
31.
U.
Gross
,
K.
Spindler
, and
E.
Hahne
, “
Shape-factor equations for radiation heat transfer between plane rectangular surfaces of arbitrary position and size with rectangular surfaces of arbitrary position and size with rectangular boundaries
,”
Lett. Heat Mass Transfer
8
,
219
227
(
1981
).
32.
HeliosFF and Helios32 are trademarks of byHeart Consultants Limited (www.helios32.com).
33.
E. J.
Rathe
, “
Note on two common problems of sound propagation
,”
J. Sound Vib.
10
,
472
479
(
1969
).
34.
J. Beran-Koehn and M. J. Pavicic, “A cubic tetrahedral adaptation of the hemi-cube algorithm,” in Graphics Gems II, edited by James Arvo (Academic, Boston, 1991), pp. 299–302.
35.
J. Beran-Koehn and M. J. Pavicic, “Delta form-factor calculation for the cubic tetrahedral algorithm,” in Graphics Gems III, edited by David Kirk (Academic, Boston, 1992), pp. 324–328.
36.
J. S.
Asvestas
and
D. C.
Englund
, “
Computing the solid angle subtended by a planar figure
,”
Opt. Eng.
33
,
4055
4056
(
1994
).
37.
R. A. Hermann, Treatise of Geometric Optics (Cambridge University Press, Cambridge, MA, 1910).
38.
J. R. Weeks, The Shape of Space, 2nd ed. (Marcel Dekker, New York, 2002).
39.
MATLAB is a registered trademark of The Math Works, Inc.
This content is only available via PDF.
You do not currently have access to this content.