An improved statistical-acoustics model of high-frequency sound fields in coupled rooms is developed by incorporating into prior models geometrical-acoustics corrections for both energy decay within subrooms and energy transfer between subrooms. The conditions under which statistical-acoustics models of coupled rooms are valid approximations to geometrical acoustics are examined by comparison of computational geometrical-acoustics predictions of decay curves in two- and three-room systems with those of both improved and prior statistical-acoustics models. The accuracy of the decay model used within subrooms is found to have a primary influence on the accuracy of predictions in coupled systems. Likewise, nondiffuse transfer of energy is shown to significantly affect decay of energy in systems of coupled rooms. The decrease in energy density of the reverberant field with distance from the source, which is predicted by geometrical acoustics, is found to result in spatial dependence of decay-curve shape for certain coupling geometries. Geometrical effects are shown to contribute to the failure of statistical-acoustics models in the case of strong coupling between subrooms; thus, previously proposed statistical-acoustics criteria cannot predict the point at which the models break down with consistent accuracy.

1.
W. B.
Joyce
, “
Sabine’s reverberation time and ergodic auditoriums
,”
J. Acoust. Soc. Am.
58
,
643
655
(
1975
).
2.
E. N.
Gilbert
, “
Ray statistics in reverberation
,”
J. Acoust. Soc. Am.
83
,
1804
1808
(
1988
).
3.
J. D.
Polack
, “
Modifying chambers to play billiards: the foundations of reverberation theory
,”
Acustica
76
,
257
272
(
1992
).
4.
H.
Kuttruff
, “
Simulierte Nachhallkurven in rechteckräumen mit diffuseen schallfeld
,” (“Simulated decay curves in rectangular rooms with diffuse sound fields”)
Acustica
25
,
333
342
(
1971
).
5.
O.
Legrand
and
D.
Sornette
, “
Test of Sabine’s reverberation time in ergodic auditoriums within geometrical acoustics
,”
J. Acoust. Soc. Am.
88
,
865
870
(
1990
).
6.
F.
Mortessange
,
O.
Legrand
, and
D.
Sornette
, “
Role of the absorption distribution and generalization of exponential reverberation law in chaotic rooms
,”
J. Acoust. Soc. Am.
94
,
154
161
(
1993
).
7.
M.
Hodgson
, “
Evidence of diffuse surface reflection in rooms
,”
J. Acoust. Soc. Am.
89
,
765
771
(
1991
).
8.
W. C. Sabine, Collected Papers on Acoustics (Dover, New York, 1964);
see also
W. S.
Franklin
, “
Derivation of equation of decaying sound in a room and definition of open window equivalent of absorption power
,”
Phys. Rev.
16
,
372
374
(
1903
);
G.
Jäger
, “Zur theorie des nachhalls,” (“On the theory of reverberation”)
Sitzungsber. Akad. Wiss. Wien, Math.-Naturwiss. Kl., Abt. 2A
120
,
613
634
(
1911
).
9.
K.
Schuster
and
W.
Waetzmann
, “Nachhall in geschlossenen Räumen,” (“Reverberation in closed rooms”)
Ann. Phys. (Leipzig)
1
,
671
695
(
1929
);
R. F. Norris, “An instrumental method of reverberation measurement,” presented at the 1st meeting of the Acoustical Society of America, New York, 10–11 May 1929, published in Ref. 23 Appendix II, pp. 603–605;
C. F.
Eyring
, “
Reverberation time in ‘dead’ rooms
,”
J. Acoust. Soc. Am.
1
,
217
241
(
1930
).
10.
G.
Millington
, “
A modified formula for reverberation
,”
J. Acoust. Soc. Am.
4
,
69
82
(
1932
);
W. J.
Sette
, “
A new reverberation time formula
,”
J. Acoust. Soc. Am.
4
,
193
210
(
1932
).
11.
H.
Kuttruff
, “
Weglängverteilung und Nachhallverlauf in Räumen mit diffuse reflektierenden Wänden,” (“
Path-length distributions and reverberation processes in rooms with diffusely reflecting walls”)
Acustica
23
,
238
239
(L) (
1970
); see also Ref. 17 pp. 122–126.
12.
T. M. W.
Embleton
, “
Absorption coefficients of surfaces calculated from decaying sound fields
,”
J. Acoust. Soc. Am.
50
,
801
811
(
1971
);
see also A. D. Pierce, Acoustics: An Introduction to Its Physical Principles and Applications (Mc–Graw Hill, New York, 1981), pp. 265–267.
13.
A. H.
Davis
, “
Reverberation equations for two adjacent rooms connected by an incompletely sound-proof partition
,”
Philos. Mag.
50
,
75
80
(
1925
).
14.
L. Cremer and H. A. Müller, Principles and Applications of Room Acoustics, trans. T. J. Schultz (Applied Science, New York, 1982), Vol. 1, pp. 261–283.
15.
C. D.
Lyle
, “
The prediction of steady state sound levels in naturally coupled enclosures
,”
Acoust. Lett.
5
,
16
21
(
1981
).
16.
C. D.
Lyle
, “
Recommendation for estimating reverberation time in coupled spaces
,”
Acoust. Lett.
5
,
35
38
(
1981
).
17.
H. Kuttruff, Room Acoustics, 4th ed. (Spon, New York, 2000), pp. 110–114, 126–129, 130, 133–137, 139–141, 142–145.
18.
V. M. A. Peutz, “Electrical analog for studying acoustical coupled rooms,” Fifth International Congress on Acoustics, Liége, Belgium, 7–14, Sept. 1965, paper G34.
19.
C. F.
Eyring
, “
Reverberation time measurement in coupled rooms
,”
J. Acoust. Soc. Am.
3
,
181
206
(
1931
).
20.
W. B.
Joyce
, “
Power series for the reverberation time
,”
J. Acoust. Soc. Am.
67
,
564
571
(
1980
).
21.
H.
Kuttruff
and
Th.
Straßen
, “
Zur Abhängigkeit des Raumnachhalls von der Wanddiffusität und von der Raumform” (“
On the dependence of reverberation time on the ‘wall diffusion’ and on room shape”),
Acustica
45
,
246
255
(
1980
).
22.
M. Hodgson, “When is diffuse-field theory accurate?” in Proc. Wallace Clement Sabine Centennial Symposium, Cambridge, MA, 1994, pp. 157–160 [also on the CD-ROM: Proceedings of the Sabine Centennial Symposium on CD ROM (available from the Acoustical Society of America), paper 1pAAe2].
23.
V. O. Knudsen, Architectural Acoustics (Wiley, New York, 1932) pp. 130–132, 141–143.
24.
M.
Vorländer
, “
Revised relation between the sound power and the average sound pressure level in rooms and consequence for acoustics measurements
,”
Acustica
81
,
332
343
(
1995
).
25.
R. N.
Miles
, “
Sound field in a rectangular enclosure with diffusely reflecting boundaries
,”
J. Sound Vib.
92
,
203
226
(
1984
).
26.
M.
Barron
and
L.-J.
Lee
, “
Energy relations in concert auditoriums I
,”
J. Acoust. Soc. Am.
84
,
618
628
(
1988
).
27.
M.
Vorländer
, “
Room acoustical simulation algorithm based on the free path distribution
,”
J. Sound Vib.
232
,
129
137
(
2000
).
28.
P. W.
Smith
, Jr.
, “
Statistical models of coupled dynamical systems and the transition from weak to strong coupling
,”
J. Acoust. Soc. Am.
65
,
695
698
(
1979
).
29.
W. B.
Joyce
, “
The exact effect of surface roughness on the reverberation time of a uniformly absorbing spherical enclosure
,”
J. Acoust. Soc. Am.
64
,
1429
1436
(
1978
).
30.
A.
Le Bot
and
A.
Bocquillet
, “
Comparison of an integral equation on energy and the ray-tracing technique in room acoustics
,”
J. Acoust. Soc. Am.
108
,
1732
1740
(
2000
).
31.
B.-I. L.
Dalenbäck
, “
Room acoustic prediction based on a unified treatment of diffuse and specular reflection
,”
J. Acoust. Soc. Am.
100
,
899
909
(
1996
).
32.
B.-I. L.
Dalenbäck
, “Verification of prediction based on Randomized Tail-Corrected cone-tracing and array modeling,” on the CD-ROM: Collected Papers, 137th Meeting of the Acoustical Society of America and the Second Convention of the European Acoustical Association, Berlin, 14–19 March 1999 (ISBN) 3-9804458-5-4, available from Deutsche Gesellschaft für Akustik, Fachbereich Physik, Universität Oldenburg, 26111 Oldenburg, Germany), paper 3pAAa1.
B.-I. L.
Dalenbäck
, [
J. Acoust. Soc. Am.
105
,
1173
(A) (
1999
)].
33.
H.
Kuttruff
, “
Zum Einfluß eines winkelabhängigen Schallabsorptionsgrades auf die Nachhallzeit” (“
On the influence of an angle-dependent sound absorption coefficient on reverberation time”),
Acustica
42
,
187
188
(L) (
1979
).
34.
G.
Benedetto
and
R.
Spagnolo
, “
Reverberation time in enclosures: The surface reflection law and the dependence of absorption coefficient on the angle of incidence
,”
J. Acoust. Soc. Am.
77
,
1447
1451
(
1985
).
35.
J. E. Summers, Reverberant acoustic energy in auditoria that comprise systems of coupled rooms (Ph.D. dissertation, Rensselaer Polytechnic Institute, Troy, NY, 2003).
36.
F.
Kawakami
and
K.
Yamaguchi
, “
Space-ensemble average of reverberation decay curves
,”
J. Acoust. Soc. Am.
70
,
1071
1082
(
1981
).
37.
ISO 3382, “Acoustics—Measurement of the reverberation time of rooms with reference to other parameters,” 1997.
38.
J.
Giner
,
C.
Militello
, and
A.
Garcı́a
, “
Ascertaining confidence within the ray-tracing method
,”
J. Acoust. Soc. Am.
106
,
816
823
(
1999
);
J.
Giner
,
C.
Militello
, and
A.
Garcı́a
, “
The Monte Carlo method to determine the error in calculation of objective acoustic parameters within the ray tracing technique
,”
J. Acoust. Soc. Am.
110
,
3081
3085
(
2001
).
39.
P. R. Bevington and D. K. Robinson, Data Reduction and Error Analysis for the Physical Sciences, 2nd ed. (McGraw–Hill, New York, 1992), pp. 41–50.
40.
S. G. Rabinovich, Measurement Errors and Uncertainties: Theory and Practice, 2nd ed., trans. M. E. Alferieff (Springer, New York, 2000), pp. 166–172.
This content is only available via PDF.
You do not currently have access to this content.