Ultrasonic wave propagation in human cancellous bone is considered. Reflection and transmission coefficients are derived for a slab of cancellous bone having an elastic frame using Biot’s theory modified by the model of Johnson et al. [J. Fluid Mech. 176, 379–402 (1987)] for viscous exchange between fluid and structure. Numerical simulations of transmitted waves in the time domain are worked out by varying the modified Biot parameters. The variation is applied to the governing parameters and is about 20%. From this study, we can gain an insight into the sensitivity of each physical parameter used in this theory. Some parameters play an important role in slow-wave wave form, such as the viscous characteristic length Λ and pore fluid bulk modulus Kf. However, other parameters play an important role in the fast-wave wave form, such as solid density ρs and shear modulus N. We also note from these simulations that some parameters such as porosity φ, tortuosity α, thickness, solid bulk modulus Ks, and skeletal compressibility frame Kb, play an important role simultaneously in both fast and slow wave forms compared to other parameters which act on the wave form of just one of the two waves. The sensitivity of the modified Biot parameters with respect to the transmitted wave depends strongly on the coupling between the solid and fluid phases of the cancellous bone. Experimental results for slow and fast waves transmitted through human cancellous bone samples are given and compared with theoretical predictions.

1.
A. M.
Parfitt
, “
Trabecular bone architecture in the pathogenesis and prevention of fracture
,”
Am. J. Med.
82
,
68
72
(
1987
).
2.
L. J.
Gibson
, “
The mechanical behavior of cancellous bone
,”
J. Biomech.
18
,
317
328
(
1985
).
3.
F. J.
Fry
and
J. E.
Barger
, “
Acoustical properties of the humain skull
,”
J. Acoust. Soc. Am.
63
,
1576
1590
(
1978
).
4.
R. B.
Ashman
,
J. D.
Corin
, and
C. H.
Turner
, “
Elastic properties of cancellous bone: Measurement by an ultrasonic technique
,”
J. Biomech.
10
,
979
989
(
1987
).
5.
R. B.
Ashman
and
J. Y.
Rho
, “
Elastic modulus of trabecular bone material
,”
J. Biomech.
21
,
177
181
(
1988
).
6.
C. M.
Langton
,
S. B.
Palmer
, and
R. W.
Porter
, “
The measurement of broadband ultrasonic attenuation in cancellous bone
,”
Eng. In. Med.
13
,
89
91
(
1984
).
7.
M. A.
Biot
, “
The theory of propagation of elastic waves in fluid-saturated porous solid. I. Low frequency range
,”
J. Acoust. Soc. Am.
28
,
168
178
(
1956
).
8.
M. A.
Biot
, “
The theory of propagation of elastic waves in fluid-saturated porous solid. I. Higher frequency range
,”
J. Acoust. Soc. Am.
28
,
179
191
(
1956
).
9.
R.
Lakes
,
H. S.
Yoon
, and
J. L.
Katz
, “
Slow compressional wave propagation in wet humain and bovine cortical bone
,”
Science
220
,
513
515
(
1983
).
10.
J. L.
Wilson
, “
Ultrasonic wave propagation in cancellous bone and cortical bone: Prediction of some experimental results by Biot’s theory
,”
J. Acoust. Soc. Am.
91
,
1106
1112
(
1992
).
11.
W.
Lauriks
,
J.
Thoen
,
I.
Van Asbroeck
,
G.
Lowet
, and
G.
Vanderperre
, “
Propagation of ultrasonic pulses through trabecular bone
,”
J. Phys. Colloq. (Paris)
4
,
1255
1258
(
1994
).
12.
M. L.
Mckelvie
and
S. B.
Palmer
, “
The interaction of ultrasound with cancellous bone
,”
Phys. Med. Biol.
36
,
1331
1340
(
1991
).
13.
T. J.
Haire
and
C. M.
Langton
, “
Biot theory: A review of its application on ultrasound propagation through cancellous bone
,”
Bone (N.Y.)
24
,
291
295
(
1999
).
14.
A.
Hosokawa
and
T.
Otani
, “
Ultrasonic wave propagation in bovine cancellous bone
,”
J. Acoust. Soc. Am.
101
,
558
562
(
1997
).
15.
A.
Hosokawa
and
T.
Otani
, “
Acoustic anisotropy in bovine cancellous bone
,”
J. Acoust. Soc. Am.
103
,
2718
2722
(
1998
).
16.
D. L.
Johnson
,
J.
Koplik
, and
R.
Dashen
, “
Theory of dynamic permeability and tortuosity in fluid-saturated porous media
,”
J. Fluid Mech.
176
,
379
402
(
1987
).
17.
J. F. Allard, Propagation of Sound in Porous Media: Modeling Sound Absorbing Materials (Chapman and Hall, London, 1993).
18.
Z. E. A.
Fellah
and
C.
Depollier
, “
Transient acoustic wave propagation in rigid porous media: A time-domain approach
,”
J. Acoust. Soc. Am.
107
,
683
688
(
2000
).
19.
Z. E. A.
Fellah
,
M.
Fellah
,
W.
Lauriks
, and
C.
Depollier
, “
Direct and inverse scattering of transient acoustic waves by a slab of rigid porous material
,”
J. Acoust. Soc. Am.
113
,
61
73
(
2003
).
20.
P.
Leclaire
,
L.
Kelders
,
W.
Lauriks
,
C.
Glorieux
, and
J.
Thoen
, “
Determination of the viscous characteristic length in air-filled porous materials by ultrasonic attenuation measurements
,”
J. Acoust. Soc. Am.
99
,
1944
1948
(
1996
).
21.
J. M. Carcione, “Wave fields in real media: Wave propagation in anisotropic, anelastic and porous media,” in Handbook of Geophysical Exploration, edited by K. Helbig and S. Treitel (Pergamon, An Imprint of Elseiver Science, 2001).
22.
K. A.
Wear
, “
Frequency dependence of ultrasonic backscatter from human trabecular bone: Theory and experiment
,”
J. Acoust. Soc. Am.
106
,
3659
3664
(
1999
).
23.
S.
Chaffai
,
V.
Roberjot
,
F.
Peyrin
,
G.
Berger
, and
P.
Laugier
, “
Frequency dependence of ultrasonic backscattering in cancellous bone: Autocorrelation model and experimental results
,”
J. Acoust. Soc. Am.
108
,
2403
2411
(
2000
).
24.
F.
Luppe
,
J. M.
Conoir
, and
H.
Franklin
, “
Scattering by a fluid cylinder in a porous medium: Application to trabecular bone
,”
J. Acoust. Soc. Am.
111
,
2573
2582
(
2002
).
25.
D. L.
Johnson
,
T. J.
Plona
, and
H.
Kojima
, “
Probing porous media with first and second sound. II. Acoustic properties of water-saturated porous media
,”
J. Appl. Phys.
76
,
115
125
(
1994
).
26.
Z. E. A.
Fellah
,
S.
Berger
,
W.
Lauriks
,
C.
Depollier
,
C.
Aristegui
, and
J. Y.
Chapelon
, “
Measuring the porosity and tortuosity of porous materials via reflected waves at oblique incidence
,”
J. Acoust. Soc. Am.
113
,
2424
2433
(
2003
).
27.
Z. E. A.
Fellah
,
C.
Depollier
,
S.
Berger
,
W.
Lauriks
,
P.
Trompette
, and
J. Y.
Chapelon
, “
Determination of transport parameters in air-saturated porous materials via reflected ultrasonic waves
,”
J. Acoust. Soc. Am.
114
,
2561
2569
(
2003
).
28.
C.
Depollier
,
J. F.
Allard
, and
W.
Lauriks
, “
Biot theory and stress-strain equations in porous sound-absorbing materials
,”
J. Acoust. Soc. Am.
84
,
2277
2279
(
1988
).
29.
K.
Wu
,
Q.
Xue
, and
L.
Adler
, “
Reflection and transmission of elastic waves from a fluid-saturated porous solid boundary
,”
J. Acoust. Soc. Am.
87
,
2349
2358
(
1990
).
This content is only available via PDF.
You do not currently have access to this content.