Aortic elasticity is an important factor in hemodynamic health, and compromised aortic compliance affects not only arterial dynamics but also myocardial function. A variety of pathologic processes (e.g., diabetes, Marfan’s syndrome, hypertension) can affect aortic elasticity by altering the microstructure and composition of the elastin and collagen fiber networks within the tunica media. Ultrasound tissue characterization techniques can be used to obtain direct measurements of the stiffness coefficients of aorta by measurement of the speed of sound in specific directions. In this study we sought to define the contributions of elastin and collagen to the mechanical properties of aortic media by measuring the magnitude and directional dependence of the speed of sound before and after selective isolation of either the collagen or elastin fiber matrix. Formalin-fixed porcine aortas were sectioned for insonification in the circumferential, longitudinal, or radial direction and examined using high-frequency (50 MHz) ultrasound microscopy. Isolation of the collagen or elastin fiber matrices was accomplished through treatment with NaOH or formic acid, respectively. The results suggest that elastin is the primary contributor to aortic medial stiffness in the unloaded state, and that there is relatively little anisotropy in the speed of sound or stiffness in the aortic wall.

1.
F. H.
Silver
,
D. L.
Christiansen
, and
C. M.
Buntin
, “
Mechanical properties of the aorta: a review
,”
Crit. Rev. Biomed. Eng.
17
,
323
358
(
1989
).
2.
P. B.
Dobrin
, “
Mechanical properties of arteries
,”
Physiol. Rev.
58
,
397
460
(
1978
).
3.
J.
Hu
,
M.
Wallensteen
, and
G.
Gennser
, “
Increased stiffness of the aorta in children and adolescents with insulin-dependent diabetes mellitus
,”
Ultrasound Med. Biol.
22
,
537
543
(
1996
).
4.
M.
Brownlee
,
A.
Cerami
, and
H.
Vlassara
, “
Advanced glycosylation end products in tissue and the biochemical basis of diabetic complications
,”
N. Engl. J. Med.
318
,
1315
1321
(
1988
).
5.
D. A.
Kass
,
E. P.
Shapiro
,
M.
Kawaguchi
,
A. R.
Capriotti
,
A.
Scuteri
,
R. C.
deGroof
, and
E. G.
Lakatta
, “
Improved arterial compliance by a novel advanced glycation end-product crosslink breaker
,”
Circulation
104
,
1464
1470
(
2001
).
6.
A. J.
Perejda
,
P. A.
Abraham
,
W. H.
Carnes
,
W. F.
Coulson
, and
J.
Uitto
, “
Marfan’s syndrome: structural, biochemical, and mechanical studies of the aortic media
,”
J. Lab. Clin. Med.
106
,
376
383
(
1985
).
7.
Y. C. Fung, in Biomechanics: Mechanical Properties of Living Tissues (Springer-Verlag, New York, 1981), pp. 196–301.
8.
A. P.
Avolio
,
S. G.
Chen
,
R. P.
Wang
,
C. L.
Zhang
,
M. F.
Li
, and
M. F.
O’Rourke
, “
Effects of aging on changing arterial compliance and left ventricular load in a northern Chinese urban community
,”
Circulation
68
,
50
58
(
1983
).
9.
E. D.
Lehmann
,
J. R.
Parker
,
K. D.
Hopkins
,
M. G.
Taylor
, and
R. G.
Gosling
, “
Validation and reproducibility of pressure-corrected aortic distensibility measurements using pulse-wave-velocity Doppler ultrasound
,”
J. Biomed. Eng.
15
,
221
228
(
1993
).
10.
V. V.
Itskovich
,
K. A.
Kraft
, and
D. Y.
Fei
, “
Rapid aortic wave velocity measurement with MR imaging
,”
Radiology
219
,
551
557
(
2001
).
11.
C.
Stefanadis
,
C.
Stratos
,
H.
Boudoulas
,
C.
Kourouklis
, and
P.
Toutouzas
, “
Distensibility of the ascending aorta: comparison of invasive and non-invasive techniques in healthy men and in men with coronary artery disease
,”
Eur. Heart J.
11
,
990
996
(
1990
).
12.
T.
Länne
,
H.
Stale
,
H.
Bengtsson
,
D.
Gustafsson
,
D.
Bergqvist
,
B.
Sonesson
,
H.
Lecerof
, and
P.
Dahl
, “
Noninvasive measurement of diameter changes in the distal abdominal aorta in man
,”
Ultrasound Med. Biol.
18
,
451
457
(
1992
).
13.
R. M.
Lang
,
B. P.
Cholley
,
C.
Korcarz
,
R. H.
Marcus
, and
S. G.
Shroff
, “
Measurement of regional elastic properties of the human aorta. A new application of transesophageal echocardiography with automated border detection and calibrated subclavian pulse tracings
,”
Circulation
90
,
1875
1882
(
1994
).
14.
C.
Stefanadis
,
C.
Stratos
,
C.
Vlachopoulos
,
S.
Marakas
,
H.
Boudoulas
,
I.
Kallikazaros
,
E.
Tsiamis
,
K.
Toutouzas
,
L.
Sioros
, and
P.
Toutouzas
, “
Pressure-diameter relation of the human aorta. A new method of determination by the application of a special ultrasonic dimension catheter
,”
Circulation
92
,
2210
2219
(
1995
).
15.
S.
Vulliemoz
,
N.
Stergiopulos
, and
R.
Meuli
, “
Estimation of local aortic elastic properties with MRI
,”
Magn. Reson. Med.
47
,
649
654
(
2002
).
16.
C. S.
Hall
,
C. T.
Nguyen
,
M. J.
Scott
,
G. M.
Lanza
, and
S. A.
Wickline
, “
Delineation of the extracellular determinants of ultrasonic scattering from elastic arteries
,”
Ultrasound Med. Biol.
26
,
613
620
(
2000
).
17.
O.
Ohtani
,
T.
Ushiki
,
T.
Taguchi
, and
A.
Kikuta
, “
Collagen fibrillar networks as skeletal frameworks: a demonstration by cell-maceration/scanning electron microscope method
,”
Arch. Histol. Cytol.
51
,
249
261
(
1988
).
18.
T.
Ushiki
, “
Preserving the original architecture of elastin components in the formic acid-digested aorta by an alternative procedure for scanning electron microscopy
,”
J. Electron. Microsc. (Tokyo)
41
,
60
63
(
1992
).
19.
V. A.
Del Grosso
and
C. W.
Mader
, “
Speed of sound in pure water
,”
J. Acoust. Soc. Am.
52
,
1442
1446
(
1972
).
20.
A. C.
Simon
,
M.
O’Rourke
, and
J.
Levenson
, “
Arterial distensibility and its effect on wave reflection and cardiac loading in cardiovascular disease
,”
Coron. Artery Dis.
2
,
1111
1120
(
1991
).
21.
E.
Picano
,
L.
Landini
,
A.
Distante
,
R.
Sarnelli
,
A.
Benassi
, and
A.
L’Abbate
, “
Different degrees of atherosclerosis detected by backscattered ultrasound: an in vitro study on fixed human aortic walls
,”
J. Clin. Ultrasound
11
,
375
379
(
1983
).
22.
E.
Picano
,
L.
Landini
,
A.
Distante
,
A.
Benassi
,
R.
Sarnelli
, and
A.
L’Abbate
, “
Fibrosis, lipids, and calcium in human atherosclerotic plaque. In vitro differentiation from normal aortic walls by ultrasonic attenuation
,”
Circ. Res.
56
,
556
562
(
1985
).
23.
L.
Landini
,
R.
Sarnelli
,
E.
Picano
, and
M.
Salvadori
, “
Evaluation of frequency dependence of backscatter coefficient in normal and atherosclerotic aortic walls
,”
Ultrasound Med. Biol.
12
,
397
401
(
1986
).
24.
B.
Barzilai
,
J. E.
Saffitz
,
J. G.
Miller
, and
B. E.
Sobel
, “
Quantitative ultrasonic characterization of the nature of atherosclerotic plaques in human aorta
,”
Circ. Res.
60
,
459
463
(
1987
).
25.
S. L.
Bridal
,
P.
Fornes
,
P.
Bruneval
, and
G.
Berger
, “
Parametric (integrated backscatter and attenuation) images constructed using backscattered radio frequency signals (25–56 MHz) from human aortae in vitro
,”
Ultrasound Med. Biol.
23
,
215
229
(
1997
).
26.
R. K.
Shepard
,
J. G.
Miller
, and
S. A.
Wickline
, “
Quantification of atherosclerotic plaque composition in cholesterol-fed rabbits with 50-MHz acoustic microscopy
,”
Arterioscler. Thromb.
12
,
1227
1234
(
1992
).
27.
Y.
Saijo
,
H.
Sasaki
,
H.
Okawai
,
S.
Nitta
, and
M.
Tanaka
, “
Acoustic properties of atherosclerosis of human aorta obtained with high-frequency ultrasound
,”
Ultrasound Med. Biol.
24
,
1061
1064
(
1998
).
28.
D.
Recchia
,
A. M.
Sharkey
,
M. S.
Bosner
,
N. T.
Kouchoukos
, and
S. A.
Wickline
, “
Sensitive detection of abnormal aortic architecture in Marfan syndrome with high-frequency ultrasonic tissue characterization
,”
Circulation
91
,
1036
1043
(
1995
).
29.
M. G.
de Kroon
,
L. F.
van der Wal
,
W. J.
Gussenhoven
,
H.
Rijsterborgh
, and
N.
Bom
, “
Backscatter directivity and integrated backscatter power of arterial tissue
,”
Int. J. Card. Imaging
6
,
265
275
(
1991
).
30.
G. R.
Lockwood
,
L. K.
Ryan
,
J. W.
Hunt
, and
F. S.
Foster
, “
Measurement of the ultrasonic properties of vascular tissues and blood from 35–65 MHz
,”
Ultrasound Med. Biol.
17
,
653
666
(
1991
).
31.
C. T.
Nguyen
,
C. S.
Hall
, and
S. A.
Wickline
, “
Characterization of aortic microstructure with ultrasound: implications for mechanisms of aortic function and dissection
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
49
,
1561
1571
(
2002
).
32.
B. A. Auld, Acoustic Fields and Waves in Solids, 2nd ed. (Krieger, Malabar, FL, 1990).
33.
A. C.
Burton
, “
Relation of structure to function of the tissues of the wall of blood vessels
,”
Physiol. Rev.
34
,
619
642
(
1954
).
34.
R. L.
Armentano
,
E. I.
Cabrera Fischer
,
J. G.
Barra
,
J. A.
Levenson
,
A. C.
Simon
, and
R. H.
Pichel
, “
Single beat evaluation of circumferential aortic elastin elastic modulus in conscious dogs. Potential application in non-invasive measurements
,”
Med. Prog. Technol.
20
,
91
99
(
1994
).
35.
Seymour Glagov, in Blood Vessels and Lymphatics in Organ Systems, edited by D. I. Abramson and P. B. Dobrin (Academic, Orlando, 1984), pp. 3–16.
36.
J. H.
Rose
,
M. R.
Kaufmann
,
S. A.
Wickline
,
C. S.
Hall
, and
J. G.
Miller
, “
A proposed microscopic elastic wave theory for ultrasonic backscatter from myocardial tissue
,”
J. Acoust. Soc. Am.
97
,
656
668
(
1995
).
37.
B. K.
Hoffmeister
,
S. M.
Handley
,
E. D.
Verdonk
,
S. A.
Wickline
, and
J. G.
Miller
, “
Estimation of the elastic stiffness coefficient c13 of fixed tendon and fixed myocardium
,”
J. Acoust. Soc. Am.
97
,
3171
3176
(
1995
).
38.
B. K.
Hoffmeister
,
S. E.
Gehr
, and
J. G.
Miller
, “
Anisotropy of the transverse mode ultrasonic properties of fixed tendon and fixed myocardium
,”
J. Acoust. Soc. Am.
99
,
3826
3836
(
1996
).
39.
B. K.
Hoffmeister
,
S. M.
Handley
,
S. A.
Wickline
, and
J. G.
Miller
, “
Ultrasonic determination of the anisotropy of Young’s modulus of fixed tendon and fixed myocardium
,”
J. Acoust. Soc. Am.
100
,
3933
3940
(
1996
).
40.
J. V.
Geleskie
and
K. K.
Shung
, “
Further studies on acoustic impedance of major bovine blood vessel walls
,”
J. Acoust. Soc. Am.
71
,
467
470
(
1982
).
41.
J. C.
Park
,
R. J.
Siegel
, and
L. L.
Demer
, “
Effect of calcification and formalin fixation on in vitro distensibility of human femoral arteries
,”
Am. Heart J.
125
,
344
349
(
1993
).
42.
J. C.
Bamber
,
C. R.
Hill
,
J. A.
King
, and
F.
Dunn
, “
Ultrasonic propagation through fixed and unfixed tissues
,”
Ultrasound Med. Biol.
5
,
159
165
(
1979
).
43.
A. F.
van der Steen
,
M. H.
Cuypers
,
J. M.
Thijssen
, and
P. C.
de Wilde
, “
Influence of histochemical preparation on acoustic parameters of liver tissue: a 5-MHz study
,”
Ultrasound Med. Biol.
17
,
879
891
(
1991
).
44.
C. S.
Hall
,
C. L.
Dent
,
M. J.
Scott
, and
S. A.
Wickline
, “
High-frequency ultrasound detection of the temporal evolution of protein cross linking in myocardial tissue
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
47
,
1051
1058
(
2000
).
45.
E. G.
Tickner
and
A. H.
Sacks
, “
A theory for the static elastic behavior of blood vessels
,”
Biorheology
4
,
151
168
(
1967
).
46.
D. J.
Patel
,
J. S.
Janicki
, and
T. E.
Carew
, “
Static anisotropic elastic properties of the aorta in living dogs
,”
Circ. Res.
25
,
765
779
(
1969
).
47.
H. W.
Weizsacker
and
T. D.
Kampp
, “
Passive elastic properties of the rat aorta
,”
Biomed. Tech.
35
,
224
234
(
1990
).
48.
J.
Zhou
and
Y. C.
Fung
, “
The degree of nonlinearity and anisotropy of blood vessel elasticity
,”
Proc. Natl. Acad. Sci. U.S.A.
94
,
14255
14260
(
1997
).
This content is only available via PDF.
You do not currently have access to this content.