A quantitative study of the low-frequency parametric modulation of a pulsed surface acoustic wave (SAW) by a partially closed fatigue crack is described. In situ ultrasonic measurements were performed during a fatigue test for different crack lengths and static opening loads. The crack is initiated in the plastic-yielding zone induced by a surface cavity, and clamped due to the constraint of the surrounding elastic medium. Small periodic loading, superimposed on a static crack-opening load, changes the open crack segment length and/or the crack interfacial condition producing nonlinear modulation of the reflected ultrasonic pulses. The modulation spectrum is related quantitatively to the crack length and to the crack opening–closure behavior. It is demonstrated that the application of a small static crack-opening load with the modulation load could considerably enhance crack detectability. The increase of the second modulation harmonic is pronounced when the crack is nearly closed and when it is nearly open. Also, it is observed that the maximum modulation occurs at different static opening loads depending on the crack length relative to the plastic-yielding zone size. A low-frequency scattering model is presented based on the mechanism of modulation of the open/close segment length of the partially opened crack. The modeling results compare favorably with experiment.

1.
O.
Buck
,
W. L.
Morris
, and
J. M.
Richardson
, “
Acoustic harmonic generation at unbonded interfaces and fatigue cracks
,”
Appl. Phys. Lett.
33
,
371
373
(
1978
).
2.
I. Y.
Solodov
, “
Ultrasonics of nonlinear contacts: Propagation, reflection, and NDE-applications
,”
Ultrasonics
36
,
383
390
(
1998
).
3.
S.
Hirose
and
J. D.
Achenbach
, “
Higher harmonics in the far field due to dynamic crack-face contacting
,”
J. Acoust. Soc. Am.
93
,
142
147
(
1993
).
4.
L. A.
Ostrovsky
and
P. A.
Johnson
, “
Dynamic nonlinear elasticity in geomaterials
,”
Riv. Nuovo Cimento
24
,
1
(
2001
).
5.
T.
Meurer
,
J.
Qu
, and
L. J.
Jacobs
, “
Wave propagation in nonlinear and hysteretic media—A numerical study
,”
Int. J. Solids Struct.
39
,
5585
5614
(
2002
).
6.
V.
Gusev
,
A.
Mandelis
, and
R.
Bleiss
, “
Theory of strong photothermal nonlinearity from sub-surface non-stationary (breathing) cracks in solids
,”
Appl. Phys. A: Mater. Sci. Process.
A57
,
229
(
1993
).
7.
I. Y.
Solodov
and
B. A.
Korshak
, “
Instability, chaos, and memory in acoustic-wave–crack interaction
,”
Phys. Rev. Lett.
88
,
014303
014305
(
2002
).
8.
A.
Baltazar
,
S. I.
Rokhlin
, and
C.
Pecorari
, “
On the relationship between ultrasonic and micromechanical properties of contacting rough surfaces
,”
J. Mech. Phys. Solids
50
,
1397
1416
(
2002
).
9.
V.
Zaitsev
,
V.
Gusev
, and
B.
Castagnede
, “
Thermoelastic mechanism for logarithmic slow dynamics and memory in elastic wave interactions with individual cracks
,”
Phys. Rev. Lett.
90
,
075501
-
1
075501
-
4
(
2003
).
10.
J. A.
TenCate
,
E.
Smith
, and
R. A.
Guyer
, “
Universal slow dynamics in granular solids
,”
Phys. Rev. Lett.
85
,
1020
1023
(
2000
).
11.
A.
Moussatov
,
V.
Gusev
, and
B.
Castagnede
, “
Self-induced hysteresis for nonlinear acoustic waves in cracked material
,”
Phys. Rev. Lett.
91
,
124301
-
1
124301
-
4
(
2003
).
12.
H.
Xiao
and
P. B.
Nagy
, “
Enhanced ultrasonic detection of fatigue cracks by laser-induced crack closure
,”
J. Appl. Phys.
83
,
7453
7460
(
1998
).
13.
Z.
Yan
and
P. B.
Nagy
, “
Thermo-optical modulation for improved ultrasonic fatigue crack detection in Ti-6Al-4V
,”
NDT & E Int.
33
,
213
223
(
2000
).
14.
D.
Donskoy
,
A.
Sutin
, and
A.
Ekimov
, “
Nonlinear acoustic interaction on contact interfaces and its use for nondestructive testing
,”
NDT & E Int.
34
,
231
238
(
2001
).
15.
K. E-A.
Van Den Abeele
,
P.
Johnson
, and
A.
Sutin
, “
Nonlinear elastic wave spectroscopy (NEWS) techniques to discern material damage, I. Nonlinear wave modulation spectroscopy (NWMS)
,”
Res. Nondestruct. Eval.
12
,
17
30
(
2000
).
16.
K. E-A.
Van Den Abeele
,
A.
Sutin
,
J.
Carmeliet
, and
P. A.
Johnson
, “
Micro-damage diagnostics using nonlinear elastic wave spectroscopy
,”
NDT & E Int.
34
,
239
248
(
2001
).
17.
V. V.
Kazakov
,
A.
Sutin
, and
P. A.
Johnson
, “
Sensitive imaging of an elastic nonlinear wave-scattering source in a solid
,”
Appl. Phys.
81
,
646
648
(
2002
).
18.
K. J.
Parker
,
S. R.
Huang
,
R. A.
Musulin
, and
R. M.
Lerner
, “
Tissue response to mechanical vibrations for sonoelasticity imaging
,”
Ultrasound Med. Biol.
16
,
241
246
(
1990
).
19.
J.
Ohpir
,
F. K.
Garra
,
E.
Konofagou
,
T.
Krouskop
,
R.
Righetti
, and
T.
Varghese
, “
Elastographic imaging
,”
Ultrasound Med. Biol.
26-S1
,
S23
S29
(
2000
).
20.
S. I.
Rokhlin
and
J.-Y.
Kim
, “
In situ ultrasonic measurement of crack closure
,”
Int. J. Fatigue
25
,
51
58
(
2003
).
21.
J.-Y.
Kim
and
S. I.
Rokhlin
, “
Surface acoustic wave measurements of small fatigue cracks initiated from a surface cavity
,”
Int. J. Solids Struct.
39
,
1487
1504
(
2002
).
22.
J.-Y.
Kim
,
V. A.
Yakovlev
, and
S. I.
Rokhlin
, “
Parametric modulation mechanism of surface acoustic wave on a partially closed crack
,”
Appl. Phys. Lett.
82
,
3202
3204
(
2003
).
23.
S. I.
Rokhlin
and
J.-Y.
Kim
, “
In situ ultrasonic monitoring of surface fatigue crack initiation and growth from surface cavity
,”
Int. J. Fatigue
25
,
41
49
(
2003
).
24.
S. I. Rokhlin and J.-Y. Kim, “Surface acoustic wave characterization of pitting corrosion damage with fatigue cracks,” in Nondestructive Materials Characterization with Application to Aerospace Materials, edited by N. G. H. Meyendorf, P. B. Nagy, and S. I. Rokhlin (Springer, New York, 2004), pp. 142–179.
25.
S. I.
Rokhlin
,
J.-Y.
Kim
,
H.
Nagy
, and
B.
Zoofan
, “
Effect of pitting corrosion on the fatigue crack initiation and fatigue life
,”
Eng. Fract. Mech.
62
,
425
444
(
1999
).
26.
G. S.
Kino
, “
The application of reciprocity theory to scattering of acoustic waves by flaws
,”
J. Appl. Phys.
49
,
3190
3199
(
1978
).
27.
B. A.
Auld
, “
General electromechanical reciprocity theory relations applied to the calculation of elastic wave scattering coefficients
,”
Wave Motion
1
,
3
10
(
1979
).
28.
B.
Budiansky
and
R. J.
O’Connell
, “
Elastic moduli of a cracked solid
,”
Int. J. Solids Struct.
12
,
81
97
(
1976
).
29.
I. A. Viktorov, Rayleigh and Lamb Waves—Physical Theory and Application (Plenum, New York, 1967).
30.
I. S. Raju and J. C. Newman, Jr., “Stress-intensity Factors for Two Symmetric Corner Cracks,” in Fracture Mechanics—ASTM STP 677, edited by C. W. Smith (ASTM, Philadelphia, 1979), pp. 411–430.
This content is only available via PDF.
You do not currently have access to this content.