The time-of-flight (TOF) method is an ultrasonic nondestructive testing (NDT) technique. The TOF of an ultrasonic wave can be correlated to weld penetration depth, and hence weld quality. Changes in material properties due to temperature gradients will cause ultrasonic speed to vary during welding, which causes a curved propagation path. A ray tracing algorithm is required in order to study how ultrasound propagates within a weld sample. In this paper, a three-dimensional (3-D) ray tracing algorithm based on Fermat’s principle is presented. First, ray equations are derived using the calculus of variation. Then, a numerical algorithm is developed to solve the derived ray equations and obtain the curved propagation path. This algorithm includes finite element analysis (FEA) to obtain the transient temperature distribution during the welding and shooting method to solve the boundary value problem. After the curved ray path is obtained, the TOF can be found by integrating the time variable along the ray path. An analytical relationship between the TOF and penetration depth can be established by repeating the ray tracing algorithm for different penetration depths. Experimental measurements of TOF have been performed, and this data is to be used to validate the numerical results.

1.
J.
Yang
,
N.
DeRidder
,
C.
Ume
, and
J.
Jarzynski
, “
Non-contact optical fibre phased array generation of ultrasound for non-destructive evaluation of materials and processes
,”
Ultrasonics
31
,
378
394
(
1993
).
2.
S.
Dixon
,
C.
Edwards
, and
S. B.
Palmer
, “
A laser-EMAT system for ultrasonic weld inspection
,”
Ultrasonics
37
,
273
281
(
1998
).
3.
S. W.
Kercel
,
R. A.
Kisner
,
M. B.
Klein
,
G. D.
Bacher
, and
B.
Pouet
, “
In-process detection of weld defects using laser-based ultrasound
,”
Proceedings of the SPIE
3852
,
81
92
(
1999
).
4.
P.
Ridgway
,
R.
Russo
,
E.
Lafond
,
C.
Habeger
, Jr.
, and
T.
Jackson
, “
Laser ultrasonic in-process inspection of paper for elastic properties
,”
J. Acoust. Soc. Am.
112
,
2350
(
2002
).
5.
M. A.
Cornwell
and
Y. H.
Berthelot
, “
Laser ultrasonics in copy paper: Bending stiffness dependence on temperature and moisture content
,”
J. Acoust. Soc. Am.
112
,
2763
2770
(
2002
).
6.
S.
Liu
,
D.
Erdah
,
I. C.
Ume
, and
A.
Achari
, “
A novel approach for flip chip solder joint quality inspection: laser ultrasound and interferometric system
,”
IEEE Transactions on Components and Packaging Technologies
,
24
,
616
624
(
2000
).
7.
G. H.
Glover
and
J. C.
Sharp
, “
Reconstruction of ultrasound propagation speed distributions in soft tissue: time-of-flight tomography
,”
IEEE Trans. Sonics Ultrason.
SU-24
,
229
234
(
1977
).
8.
F. A.
Mauer
,
S. J.
Norton
,
Y.
Grinberg
,
D.
Pitchure
, and
H. N. G.
Wadley
, “
An ultrasonic method for reconstructing the two-dimensional liquid–solid interface in solidifying bodies
,”
Metall. Trans. B
22
,
467
473
(
1991
).
9.
M.
Miller
,
B.
Mi
,
A.
Kita
, and
I. C.
Ume
, “
Development of automated real-time data acquisition system for robotic weld quality monitoring
,”
Mechatronics
12
,
1259
1269
(
2002
).
10.
G. M.
Graham
and
I. C.
Ume
, “
Automated system for laser ultrasonic sensing of weld Penetration
,”
Mechatronics
7
,
711
721
(
1997
).
11.
V. Y.
Grechka
and
G. A.
McMechan
, “
3-D two-point ray tracing for heterogeneous weakly transversely isotropic media
,”
Geophysics
61
,
1883
1894
(
1996
).
12.
H.
Sadeghi
,
S.
Suzuki
, and
H.
Takenaka
, “
A two-point, three-dimensional seismic ray tracing using genetic algorithms
,”
Phys. Earth Planet. Inter.
113
,
355
365
(
1999
).
13.
D. T.
Queheillalt
,
Y.
Lu
, and
H. N. G.
Wadley
, “
Laser ultrasonic studies of solid–liquid interfaces
,”
J. Acoust. Soc. Am.
101
,
843
853
(
1997
).
14.
J. A.
Johnson
,
N. M.
Carlson
, and
L. A.
Lott
, “
Ultrasonic wave propagation in temperature gradients
,”
Journal of Nondestructive Evaluation
6
,
147
156
(
1987
).
15.
R. Weinstock, Calculus of Variations: With Applications to Physics and Engineering (Dover, New York, 1952), pp. 67–71.
16.
S.
Prasad
and
T. K. S.
Narayanan
, “
Finite element analysis of temperature distribution during arc welding using adaptive grid technique
,”
Weld. J. (London)
75
,
123s
128s
(
1996
).
17.
E.
Kannatey-Asibu
,
N.
Kikuchi
, and
A.
Jallad
, “
Experimental finite element analysis of temperature distribution during arc welding
,”
J. Eng. Mater. Technol.
111
,
8
18
(
1989
).
18.
J.
Goldak
and
M.
Bibby
, “
Computer modeling of heat flow in welds
,”
Metall. Trans. B
17
,
587
600
(
1986
).
19.
D. Radaj, Heat Effects of Welding (Springer-Verlag, Berlin, 1992), pp. 20–30.
20.
C. B.
Scruby
and
B. C.
Moss
, “
Non-contact ultrasonic measurements on steel at elevated temperatures
,”
NDT & E Int.
26
,
177
188
(
1993
).
21.
S. N.
Hopko
and
I. C.
Ume
, “
Laser generated ultrasound by material ablation using fiber optic delivery
,”
Ultrasonics
37
,
1
7
(
1999
).
22.
J. D.
Aussel
and
J. P.
Monchalin
, “
Precision laser-ultrasonic velocity measurement and elastic constant determination
,”
Ultrasonics
27
,
165
177
(
1989
).
23.
D. R.
Hull
,
H. E.
Kautz
, and
A.
Vary
, “
Measurement of ultrasonic velocity using phase-slope and cross-correlation methods
,”
Mater. Eval.
43
,
1455
1460
(
1985
).
This content is only available via PDF.
You do not currently have access to this content.