Continuous loop averaging deconvolution (CLAD) is a new general mathematical theory and method developed to deconvolve overlapping auditory evoked responses obtained at high stimulation rates. Using CLAD, arbitrary stimulus sequences are generated and averaged responses deconvolved. Until now, only a few special stimulus series such as maximum length sequences (MLS) and Legendre sequences (LGS) were capable of performing this task. A CLAD computer algorithm is developed and implemented in an evoked potential averaging system. Computer simulations are used to verify the theory and methodology. Auditory brainstem responses (ABR) and middle latency responses (MLR) are acquired from subjects with normal hearing at high stimulation rates to validate and show the feasibility of the CLAD technique.

1.
Azzena
,
G. B.
,
Conti
,
G.
,
Santarelli
,
R.
,
Ottoviani
,
F.
,
Paludetti
,
G.
, and
Maurizi
,
M.
(
1995
). “
Generation of human auditory steady-state responses (SSRs). I. Stimulus rate effects
,”
Hear. Res.
83
,
1
8
.
2.
Burkard
,
R.
,
Shi
,
Y.
, and
Hecox
,
K. E.
(
1990
). “
A comparison of maximum length sequences and Legendre sequences for the derivation of brainstem auditory evoked responses at rapid rates of stimulation
,”
J. Acoust. Soc. Am.
87
,
1656
1664
.
3.
Burkard
,
R.
(
1994
). “
Gerbil brain-stem auditory-evoked responses to maximum length sequences
,”
J. Acoust. Soc. Am.
95
,
2126
2135
.
4.
Chan
,
F. H. Y.
,
Lam
,
F. K.
,
Poon
,
P. W. F.
, and
Du
,
M. H.
(
1992
). “
Measurement of human BAERs by the maximum length sequence technique
,”
Med. Biol. Eng. Comput.
30
,
32
40
.
5.
Eysholdt
,
U.
, and
Schreiner
,
C.
(
1982
). “
Maximum length sequences—a fast method for measuring brainstem evoked responses
,”
Audiology
21
,
242
250
.
6.
Jewett, D. L., Larson-Prior, L. S. and Baird, W. (2001). “A novel techniques for analysis of temporally-overlapped neural responses,” Evoked Response Audiometry XVII Biennial Symposium IERASG, p. 31. (2001).
7.
Lasky
,
R.
(
1992
). “
Maximum length sequence auditory evoked brainstem responses in human newborns and adults
,”
J. Am. Acad. Audiol
3
,
383
389
.
8.
Li
,
H. F.
,
Chan
,
F. H. Y.
,
Poon
,
P. W. F.
,
Hwang
,
J. C.
, and
Chan
,
W. S.
(
1988
). “
Maximum length sequence applied to the measurement of brainstem auditory evoked responses
,”
J. Biomed. Eng.
10
,
14
24
.
9.
Marsh
,
R.
(
1992
). “
Signal to noise constraints on maximum length sequence auditory brain stem responses
,”
Ear Hear.
13
,
396
400
.
10.
Picton
,
T. W.
,
Champagne
,
S. C.
, and
Kellet
,
A. J. C.
(
1992
). “
Human auditory evoked potentials using maximum length sequences
,”
Electroencephalogr. Clin. Neurophysiol.
84
,
90
100
.
11.
Ozdamar
,
O.
, and
Kraus
,
N.
(
1983
). “
Auditory middle-latency responses in humans
,”
Audiology
22
,
34
49
.
12.
Ozdamar
,
O.
, and
Delgado
,
R. E.
(
1996
). “
Measurement of signal and noise characteristics in ongoing auditory brainstem response averaging
,”
Ann. Biomed. Eng.
4
,
702
715
.
13.
Shi
,
Y.
, and
Hecox
,
K. E.
(
1991
). “
Nonlinear system identification by m-pulse sequences: Application to brainstem auditory evoked responses
,”
IEEE Trans. Biomed. Eng.
38
,
834
845
.
14.
Thornton
,
A. R. D.
(
1993
). “
High rate otoacoustic emissions
,”
J. Acoust. Soc. Am.
94
,
132
136
.
15.
Thornton
,
A. R. D.
, and
Slaven
,
A.
(
1993
). “
Auditory brainstem responses recorded at fast stimulation rates using maximum length sentences
,”
Br. J. Audiol.
27
,
205
210
.
16.
Weber
,
B. A.
and
Roush
,
P. A.
(
1995
). “
Use of maximim length sequence analysis in new born testing
,”
J. Am. Acad. Audiol.
6
,
187
190
.
This content is only available via PDF.
You do not currently have access to this content.