Identification algorithms are considered for a class of targets situated near the bottom of a water channel. It is assumed that the target-sensor distance relative to the channel depth is such that a ray-based representation of the scattered fields is appropriate (vis-à-vis a modal representation). Two approaches are considered for processing the scattered fields. In one algorithm a deconvolution is performed to remove the channel response, and thereby recover the free-field target scattered signature. In this case the classifier is trained based on free-field data. In the second approach the array receiver is employed to point the sensor in particular directions, and the beam-formed signal is used directly in the subsequent classifier. In this case the classifier must be trained based on in-channel data. Multiple scattered signals are measured, from a sequence of target-sensor orientations, with the waveforms classified via a hidden Markov model. Example results are presented for scattering data simulated via the finite-element method and coupled to a normal-mode waveguide modal, for elastic targets situated in a water channel.

1.
D. M.
Photiadis
,
J. A.
Bucaro
, and
B. H.
Houston
, “
Scattering from flexural waves on a ribbed cylindrical shell
,”
J. Acoust. Soc. Am.
96
,
2785
2790
(
1994
).
2.
P. R.
Runkle
,
P. K.
Bharadwaj
,
L.
Couchman
, and
L.
Carin
, “
Hidden Markov models for multi-aspect target classification
,”
IEEE Trans. Signal Process.
47
,
2035
2040
(
1999
).
3.
P. K.
Bharadwaj
,
P. R.
Runkle
, and
L.
Carin
, “
Target Identification with wave-based matched pursuits and hidden Markov models
,”
IEEE Trans. Antennas Propag.
47
,
1543
1554
(
1999
).
4.
N.
Dasgupta
,
P. K.
Bharadwaj
,
L.
Couchman
, and
L.
Carin
, “
Dual hidden Markov model for characterizing wavelet coefficients from multi-aspect scattering data
,”
Signal Process.
81
,
1303
1316
(
2001
).
5.
N.
Dasgupta
,
P.
Runkle
,
L.
Carin
,
L.
Couchman
,
T.
Yoder
,
J.
Bucaro
, and
G. J.
Dobeck
, “
Class-based target identification with multiaspect scattering data
,”
IEEE J. Ocean. Eng.
28
,
271
282
(
2003
).
6.
X. Liao, P. R. Runkle, Y. Jiao, and L. Carin, “Identification of ground targets from sequential HRR radar signatures,” Proceeding of ICASSP2001, Vol. V, May, 2001, Salt Lake City.
7.
M. K.
Broadhead
, “
Broadband source signature extraction from underwater acoustics data with sparse environment information
,”
J. Acoust. Soc. Am.
97
,
1322
1325
(
1995
).
8.
M. K.
Broadhead
,
R. L.
Field
, and
J. H.
Leclere
, “
Sensitivity of the deconvolution of acoustic transients to Green’s function mismatch
,”
J. Acoust. Soc. Am.
94
,
994
1002
(
1993
).
9.
M. K.
Broadhead
,
L. A.
Pflug
, and
R. L.
Field
, “
Use of high order statistics in source signature estimation
,”
J. Acoust. Soc. Am.
107
,
2576
2585
(
2000
).
10.
S.
Angle
, “
Extraction of a target scattering response from measurements made over long ranges in shallows water
,”
J. Acoust. Soc. Am.
102
,
825
832
(
1997
).
11.
P.
Chevret
,
N.
Gache
, and
V.
Zimpfer
, “
Time-frequency filters for target classification
,”
J. Acoust. Soc. Am.
106
,
1829
1837
(
1999
).
12.
T. Cover and J. Thomas, Elements of Information Theory (John Wiley & Sons, New York, 1991).
13.
L. R.
Rabiner
, “
A tutorial on hidden markov models and selected applications in speech recognition
,”
Proc. IEEE
77
,
257
285
(
1989
).
14.
F. B. Jensen, W. A. Kuperman, M. B. Porter, and H. Schmidt, “Computational Ocean Acoustics” (AIP, Woodbury, NY, 1993).
15.
M. B.
Porter
, “
Acoustical models and sonar systems
,”
IEEE J. Ocean. Eng.
18
,
425
437
(
1993
).
16.
M. R.
Azimi-Sadjadi
,
D.
Yao
,
Q.
Huang
, and
G. J.
Dobeck
, “
Underwater target classification using wavelet packets and neural networks
,”
IEEE Trans. Neural Netw.
11
,
784
794
(
2000
).
17.
C.
Yuan
,
M. R.
Azimi-Sadjadi
,
J.
Wilbur
, and
G. J.
Dobeck
, “
Underwater target detection using multi-channel subband filtering and high-order correlation schemes
,”
IEEE J. Ocean. Eng.
25
,
192
205
(
2000
).
18.
M. R.
Azimi-Sadjadi
,
S.
Charleston
,
J.
Wilbur
, and
G. J.
Dobeck
, “
A new time delay estimation in subbands for resolving multiple specular reflections
,”
IEEE Trans. Signal Process.
46
,
3398
3403
(
1998
).
19.
G. Cauwenberghs, R. T. Edwards, D. Yunbin, R. Genov, and D. Lemonds, “Neuromorphic processor for real-time biosonar object detection,” 2002 IEEE Int. Conf. Acoustics, Speech and Sig. Proc., Vol. 4, pp. 3984–3987 (2002).
20.
M.
Montanari
and
H.
Schmidt
, “
Buried mine classification by means of high-order spectral analysis
,”
J. Acoust. Soc. Am.
112
,
2222
(
2002
).
21.
G. J.
Dobeck
and
J. T.
Cobb
, “
Advances in algorithm fusion for automated sea mine detection and classification
,”
J. Acoust. Soc. Am.
112
,
2307
(
2002
).
22.
R. Monzingo and T. Miller, Introduction to Adaptive Arrays (Wiley, New York, 1980).
23.
M.
McClure
,
L.
Carin
, “
Matching pursuits with time-frequency dictionaries
,”
IEEE Trans. Signal Process.
45
,
2912
2927
(
1997
).
24.
N. S. Jayant and P. Noll, Digital Coding of Waveforms (Prentice-Hall, Englewood Cliffs, NJ, 1984).
25.
R. O. Duda and P. E. Hart, Pattern Classification and Scene Analysis (Wiley, New York, 1973).
26.
W. S. Burdic, Underwater Acoustic System Analysis, 2nd ed. (Prentice Hall, Englewood Cliffs, NJ, 1991).
27.
A.
Weiss
and
B.
Friedlander
, “
On the Cramer-Rao bound for direction finding of correlated signals
,”
IEEE Trans. Signal Process.
41
,
495
499
(
1993
).
28.
B.
Friedlander
and
A.
Weiss
, “
Direction finding using noise covariance modeling
,”
IEEE Trans. Signal Process.
43
,
1557
1567
(
1995
).
29.
H. C.
Song
,
W. A.
Kuperman
, and
W. S.
Hodgkiss
, “
A time-reversal mirror with variable range focusing
,”
J. Acoust. Soc. Am.
103
,
3234
3240
(
1998
).
This content is only available via PDF.
You do not currently have access to this content.