The effect of spatial separation on the ability of human listeners to resolve a pair of concurrent broadband sounds was examined. Stimuli were presented in a virtual auditory environment using individualized outer ear filter functions. Subjects were presented with two simultaneous noise bursts that were either spatially coincident or separated (horizontally or vertically), and responded as to whether they perceived one or two source locations. Testing was carried out at five reference locations on the audiovisual horizon (0°, 22.5°, 45°, 67.5°, and 90° azimuth). Results from experiment 1 showed that at more lateral locations, a larger horizontal separation was required for the perception of two sounds. The reverse was true for vertical separation. Furthermore, it was observed that subjects were unable to separate stimulus pairs if they delivered the same interaural differences in time (ITD) and level (ILD). These findings suggested that the auditory system exploited differences in one or both of the binaural cues to resolve the sources, and could not use monaural spectral cues effectively for the task. In experiments 2 and 3, separation of concurrent noise sources was examined upon removal of low-frequency content (and ITDs), onset/offset ITDs, both of these in conjunction, and all ITD information. While onset and offset ITDs did not appear to play a major role, differences in ongoing ITDs were robust cues for separation under these conditions, including those in the envelopes of high-frequency channels.

1.
Batteau
,
D. W.
(
1967
). “
The role of the pinna in human localization
,”
Proc. R. Soc. London, Ser. B
158
,
158
180
.
2.
Bernstein
,
L. R.
, and
Trahiotis
,
C.
(
1982
). “
Detection of interaural delay in high-frequency noise
,”
J. Acoust. Soc. Am.
71
(
1
),
147
152
.
3.
Best, V., van Schaik, A., and Carlile, S. (2002). “The perception of multiple broadband noise sources presented concurrently in virtual auditory space,” in Proc. Audio Engineering Society 112th Convention, Munich, Germany, paper 5549.
4.
Blauert, J. (1983). Spatial Hearing: The Psychophysics of Human Sound Localization (MIT, Cambridge).
5.
Blauert
,
J.
, and
Lindemann
,
W.
(
1986
). “
Spatial mapping of intracranial auditory events for various degrees of interaural coherence
,”
J. Acoust. Soc. Am.
79
,
806
813
.
6.
Braasch
,
J.
(
2002
). “
Localization in the presence of a distracter and reverberation in the frontal horizontal plane: II. Model algorithms
,”
Acust. Acta Acust.
88
,
956
969
.
7.
Bregman, A. S. (1990). Auditory Scene Analysis: The Perceptual Organization of Sound (MIT, Cambridge).
8.
Bregman
,
A. S.
, and
Campbell
,
J.
(
1971
). “
Primary auditory stream segregation and perception of order in rapid sequences of tones
,”
J. Exp. Psychol.
89
,
244
249
.
9.
Buell
,
T. N.
,
Trahiotis
,
C.
, and
Bernstein
,
L. R.
(
1991
). “
Lateralization of low-frequency tones: Relative potency of gating and ongoing interaural delays
,”
J. Acoust. Soc. Am.
90
,
3077
3085
.
10.
Butler
,
R. A.
(
1986
). “
The bandwidth effect on monaural and binaural localization
,”
Hear. Res.
21
,
67
73
.
11.
Butler
,
R. L.
, and
Humanski
,
R. A.
(
1992
). “
Localization of sound in the vertical plane with and without high-frequency spectral cues
,”
Percept. Psychophys.
51
(
2
),
182
186
.
12.
Butler
,
R. A.
,
Humanski
,
R. A.
, and
Musicant
,
A. D.
(
1990
). “
Binaural and monaural localization of sound in two-dimensional space
,”
Perception
19
,
241
256
.
13.
Carlile, S. (ed.) (1996). Virtual Auditory Space: Generation and Applications (Landes, Austin).
14.
Carlile
,
S.
, and
Delaney
,
S.
(
1999
). “
The localization of spectrally restricted sounds by human listeners
,”
Hear. Res.
128
,
175
189
.
15.
Carlile, S., and Leung, J. (2001). “Rendering sound sources in high fidelity virtual auditory space: Some spatial sampling and psychophysical factors,” in Usability Evaluation and Interface Design: Cognitive Engineering, Intelligent Agents and Virtual Reality, edited by M. Smith, G. Salvendy, D. Harris, and R. Koubek (Erlbaum, Hillsdale, NJ), pp. 599–603.
16.
Carlile, S., Jin, C., and van Raad, V. (2000). “Continuous virtual auditory space using HRTF interpolation: Acoustic and psychophysical errors,” Proc. First IEEE Pacific-Rim Conf. Multimedia, Sydney, Australia, pp. 220–223.
17.
Carlile
,
S.
,
Leong
,
P.
, and
Hyams
,
S.
(
1997
). “
The nature and distribution of errors in sound localization by human listeners
,”
Hear. Res.
114
,
179
196
.
18.
Dirks
,
D. D.
, and
Wilson
,
R. H.
(
1969
). “
The effect of spatially separated sound sources on speech intelligibility
,”
J. Speech Hear. Res.
12
,
5
38
.
19.
Divenyi
,
P. L.
, and
Oliver
,
S. K.
(
1989
). “
Resolution of steady-state sounds in simulated auditory space
,”
J. Acoust. Soc. Am.
85
,
2042
2052
.
20.
Domnitz
,
R. H.
, and
Colburn
,
H. S.
(
1977
). “
Lateral position and interaural discrimination
,”
J. Acoust. Soc. Am.
61
,
1586
1598
.
21.
Durlach, N. I., and Colburn, H. S. (1978). “Binaural Phenomena,” in The Handbook of Perception, edited by E. C. Carterette and M. P. Friedman (Academic, New York).
22.
Gabriel
,
K. J.
, and
Colburn
,
H. S.
(
1981
). “
Interaural correlation discrimination: I. Bandwidth and level dependence
,”
J. Acoust. Soc. Am.
69
,
1394
1401
.
23.
Gaik
,
W.
(
1993
). “
Combined evaluation of interaural time and intensity differences: Psychoacoustic results and computer modeling
,”
J. Acoust. Soc. Am.
94
,
98
110
.
24.
Gardner
,
M. B.
, and
Gardner
,
R. S.
(
1973
). “
Problem of localization in the median plane: Effect of pinnae cavity occlusion
,”
J. Acoust. Soc. Am.
53
,
400
408
.
25.
Hafter
,
E. R.
, and
De Maio
,
J.
(
1975
). “
Difference thresholds for interaural delay
,”
J. Acoust. Soc. Am.
57
,
181
187
.
26.
Hartmann
,
W. M.
(
1983
). “
Localization of sound in rooms
,”
J. Acoust. Soc. Am.
74
,
1380
1391
.
27.
Henning
,
G. B.
(
1974
). “
Detectability of interaural delay in high-frequency complex waveforms
,”
J. Acoust. Soc. Am.
55
,
84
90
.
28.
Henning
,
G. B.
(
1980
). “
Some observations on the lateralization of complex waveforms
,”
J. Acoust. Soc. Am.
68
,
446
454
.
29.
Hershkowitz
,
R. M.
, and
Durlach
,
N. I.
(
1969
). “
Interaural time and amplitude jnds for a 500-Hz tone
,”
J. Acoust. Soc. Am.
46
,
1464
1467
.
30.
Hirsh
,
I. J.
(
1950
). “
The relation between localization and intelligibility
,”
J. Acoust. Soc. Am.
22
,
196
200
.
31.
Klumpp
,
R. G.
, and
Eady
,
H. R.
(
1956
). “
Some measurements of interaural time difference thresholds
,”
J. Acoust. Soc. Am.
28
,
859
860
.
32.
Kunov
,
H.
, and
Abel
,
S. M.
(
1981
). “
Effects of rise/decay time on the lateralization of interaurally delayed 1-kHz tones
,”
J. Acoust. Soc. Am.
69
,
769
773
.
33.
McFadden
,
D.
, and
Pasanen
,
E. G.
(
1976
). “
Lateralization at high frequencies based on interaural time differences
,”
J. Acoust. Soc. Am.
59
,
634
639
.
34.
Middlebrooks
,
J. C.
(
1992
). “
Narrow-band sound localization related to external ear acoustics
,”
J. Acoust. Soc. Am.
92
,
2607
2624
.
35.
Middlebrooks
,
J. C.
, and
Green
,
D. M.
(
1991
). “
Sound localization by human listeners
,”
Annu. Rev. Psychol.
42
,
135
159
.
36.
Middlebrooks
,
J. C.
,
Makous
,
J. C.
, and
Green
,
D. M.
(
1989
). “
Directional sensitivity of sound pressure levels in the human ear canal
,”
J. Acoust. Soc. Am.
86
,
89
108
.
37.
Mills, A. W. (1972). “Auditory Localization,” in Foundations of Modern Auditory Theory, edited by J. V. Tobias (Academic, New York), pp. 303–348.
38.
Moller
,
H.
,
Sorensen
,
M. F.
,
Hammershoi
,
D.
, and
Jensen
,
C. B.
(
1995
). “
Head-related transfer functions of human subjects
,”
J. Audio Eng. Soc.
43
(
5
),
300
321
.
39.
Moore, B. C. J. (1997). An Introduction to the Psychology of Hearing (Academic, London).
40.
Noble
,
W.
,
Byrne
,
D.
, and
Ter-Host
,
K.
(
1997
). “
Auditory localization, detection of spatial separateness, and speech hearing in noise by hearing impaired listeners
,”
J. Acoust. Soc. Am.
102
,
2343
2352
.
41.
Perrott
,
D. R.
(
1984
). “
Concurrent minimum audible angle: A re-examination of the concept of auditory spatial acuity
,”
J. Acoust. Soc. Am.
75
,
1201
1206
.
42.
Perrott
,
D. R.
, and
Saberi
,
K.
(
1990
). “
Minimum audible angle thresholds for sources varying in both elevation and azimuth
,”
J. Acoust. Soc. Am.
87
,
1728
1731
.
43.
Pickles, J. O. (1988). An Introduction to the Physiology of Hearing (Academic, London).
44.
Pollack
,
I.
, and
Trittipoe
,
W. J.
(
1959a
). “
Binaural listening and interaural noise cross correlation
,”
J. Acoust. Soc. Am.
31
,
1250
1252
.
45.
Pollack
,
I.
, and
Trittipoe
,
W. J.
(
1959b
). “
Interaural noise correlations: Examination of variables
,”
J. Acoust. Soc. Am.
31
,
1616
1618
.
46.
Pralong
,
D.
, and
Carlile
,
S.
(
1996
). “
The role of individualized headphone calibration for the generation of high fidelity virtual auditory space
,”
J. Acoust. Soc. Am.
100
,
3785
3793
.
47.
Shinn-Cunningham, B. G. (2000). “Learning reverberation: Considerations for spatial auditory displays,” in Proc. Int. Conf. Auditory Display, Atlanta, GA, pp. 126–134.
48.
Stellmack
,
M. A.
(
1994
). “
The reduction of binaural interference by the temporal nonoverlap of components
,”
J. Acoust. Soc. Am.
96
,
1465
1470
.
49.
Tobias
,
J. V.
, and
Schubert
,
E. D.
(
1959
). “
Effective onset duration of auditory stimuli
,”
J. Acoust. Soc. Am.
31
,
1595
1605
.
50.
Yost
,
W. A.
(
1976
). “
Lateralization of repeated filtered transients
,”
J. Acoust. Soc. Am.
60
,
178
181
.
51.
Zahorik
,
P.
(
2000
). “
Limitations in using Golay codes for head-related transfer function measurement
,”
J. Acoust. Soc. Am.
107
,
1793
1796
.
52.
Zhou
,
B.
,
Green
,
D. M.
, and
Middlebrooks
,
J. C.
(
1992
). “
Characterization of external ear impulse responses using Golay codes
,”
J. Acoust. Soc. Am.
92
,
1169
1171
.
This content is only available via PDF.
You do not currently have access to this content.