Auditory scene analysis involves the simultaneous grouping and parsing of acoustic data into separate mental representations (i.e., objects). Over two experiments, we examined the sequence of neural processes underlying concurrent sound segregation by means of recording of human middle latency auditory evoked responses. Participants were presented with complex sounds comprising several harmonics, one of which could be mistuned such that it was not an integer multiple of the fundamental frequency. In both experiments, Na (approximately 22 ms) and Pa (approximately 32 ms) waves were reliably generated for all classes of stimuli. For stimuli with a fundamental frequency of 200 Hz, the mean Pa amplitude was significantly larger when the third harmonic was mistuned by 16% of its original value, relative to when it was tuned. The enhanced Pa amplitude was related to an increased likelihood in reporting the presence of concurrent auditory objects. Our results are consistent with a low-level stage of auditory scene analysis in which acoustic properties such as mistuning act as preattentive segregation cues that can subsequently lead to the perception of multiple auditory objects.

1.
Alain
,
C.
, and
Izenberg
,
A.
(
2003
). “
Effects of attentional load on auditory scene analysis
,”
J. Cogn Neurosci.
15
,
1063
1073
.
2.
Alain
,
C.
,
Arnott
,
S. R.
, and
Picton
,
T. W.
(
2001
). “
Bottom-up and top-down influences on auditory scene analysis: Evidence from event-related brain potentials
,”
J. Exp. Psychol. Hum. Percept. Perform.
27
,
1072
1089
.
3.
Alain
,
C.
,
Schuler
,
B. M.
, and
McDonald
,
K. L.
(
2002
). “
Neural activity associated with distinguishing concurrent auditory objects
,”
J. Acoust. Soc. Am.
111
,
990
995
.
4.
Amenedo
,
E.
, and
Dı́az
,
F.
(
1998
). “
Effects of aging on middle-latency auditory evoked potentials: A cross-sectional study
,”
Biol. Psychiatry
43
,
210
219
.
5.
Ballantyne, D. (1990). Handbook of Audiological Techniques (Butterworth-Heinemann, London).
6.
Beiter
,
R. C.
, and
Hogan
,
D. D.
(
1973
). “
Effects of variations in stimulus rise-decay time upon the early components of the auditory evoked response
,”
Electroencephalogr. Clin. Neurophysiol.
34
,
203
206
.
7.
Berg
,
P.
, and
Scherg
,
M.
(
1994
). “
A multiple source approach to the correction of eye artifacts
,”
Electroencephalogr. Clin. Neurophysiol.
90
,
229
241
.
8.
Bregman, A. S. (1990). Auditory Scene Analysis: The Perceptual Organization of Sounds (MIT, London).
9.
Chalikia
,
M. B.
, and
Bregman
,
A. S.
(
1989
). “
The perceptual segregation of simultaneous auditory signals: Pulse train segregation and vowel segregation
,”
Percept. Psychophys.
46
,
487
496
.
10.
Eggermont
,
J. J.
, and
Ponton
,
C. W.
(
2002
). “
The neurophysiology of auditory perception: From single units to evoked potentials
,”
Audiol. Neuro-Otol.
7
,
71
99
.
11.
Hartmann, W. M. (1988). “Pitch, perception and the segregation and integration of auditory entities,” in Auditory Functions: Neurobiological Bases of Hearing, edited by G. M. Edelman, W. E. Gall, and W. M. Cowan (Wiley, New York), pp. 623–645.
12.
Kubovy
,
M.
, and
Van Valkenburg
,
D.
(
2001
). “
Auditory and visual objects
,”
Cognition
80
,
97
126
.
13.
Lane
,
R. H.
,
Kupperman
,
G. L.
, and
Goldstein
,
R.
(
1971
). “
Early components of the averaged electroencephalic response in relation to rise-decay time and duration of pure tones
,”
J. Speech Hear. Res.
14
,
408
415
.
14.
Liégois-Chauvel
,
C.
,
Musolino
,
A.
, and
Chauvel
,
P.
(
1991
). “
Localization of the primary auditory areas in man
,”
Brain
114
,
139
153
.
15.
Lin
,
J. Y.
, and
Hartmann
,
W. M.
(
1998
). “
The pitch of a mistuned harmonic: Evidence for a template model
,”
J. Acoust. Soc. Am.
103
,
2608
2617
.
16.
Lins
,
O. G.
,
Picton
,
T. W.
,
Berg
,
P.
, and
Scherg
,
M.
(
1993a
). “
Ocular artifacts in EEG and event-related potentials: I. Scalp topography
,”
Brain Topogr
6
,
51
63
.
17.
Lins
,
O. G.
,
Picton
,
T. W.
,
Berg
,
P.
, and
Scherg
,
M.
(
1993b
). “
Ocular artifacts in recording EEGs and event-related potentials: II. Source dipoles and source components
,”
Brain Topogr
6
,
65
78
.
18.
McGee
,
T.
,
Kraus
,
N.
,
Littman
,
T.
, and
Nicol
,
T.
(
1992
). “
Contribution of medial geniculate body subdivision to the middle latency response
,”
Hear. Res.
61
,
147
152
.
19.
Moore
,
B. C. J.
,
Glasberg
,
B. R.
, and
Peters
,
R. W.
(
1986
). “
Thresholds for hearing mistuned partials as separate tones inharmonic complexes
,”
J. Acoust. Soc. Am.
80
,
479
483
.
20.
Moore
,
B. C. J.
,
Peters
,
R. W.
, and
Glasberg
,
B. R.
(
1985
). “
Thresholds for the detection of inharmonicity in complex tones
,”
J. Acoust. Soc. Am.
77
,
1861
1867
.
21.
Neuhoff
,
J. G.
(
2003
). “
Pitch variation is unnecessary (and sometimes insufficient) for the formation of auditory objects
,”
Cognition
87
,
219
224
.
22.
Palmer
,
A. R.
(
1990
). “
The representation of the spectra and fundamental frequencies of steady-state single- and double-vowel sounds in the temporal discharge patterns of guinea pig cochlear-nerve fibers
,”
J. Acoust. Soc. Am.
88
,
1412
1426
.
23.
Pantev
,
C.
,
Bertrand
,
O.
,
Eulitz
,
C.
,
Verkindt
,
C.
,
Hampson
,
S.
,
Schuierer
,
G.
, and
Elbert
,
T.
(
1995
). “
Specific tonotopic organizations of different areas of the human auditory cortex revealed by simultaneous magnetic and electric recordings
,”
Electroencephalogr. Clin. Neurophysiol.
94
,
26
40
.
24.
Picton, T. W., and Fitzgerald, P. G. (1983). “A general description of the human auditory evoked potentials,” in Bases of Auditory Brain-stem Evoked Responses, edited by E. J. Moore (Grune and Stratton, New York), pp. 141–156.
25.
Picton
,
T. W.
,
van Roon
,
P.
,
Armilio
,
M. L.
,
Berg
,
P.
,
Ille
,
N.
, and
Scherg
,
M.
(
2000
). “
The correction of ocular artifacts: A topographic perspective
,”
Clin. Neurophysiol.
111
,
53
65
.
26.
Scheffers
,
M. T. M.
(
1983
). “
Simulation of auditory analysis of pitch: An elaboration on the DWS pitch meter
,”
J. Acoust. Soc. Am.
74
,
1716
1725
.
27.
Scherg
,
M.
, and
von Cramon
,
D.
(
1986
). “
Evoked dipole source potentials of the human auditory cortex
,”
Electroencephalogr. Clin. Neurophysiol.
65
,
344
360
.
28.
Sinex
,
D. G.
,
Sabes
,
J. H.
, and
Li
,
H.
(
2002
). “
Responses of inferior colliculus neurons to harmonic and mistuned complex tones
,”
Hear. Res.
168
,
150
162
.
29.
Skinner
,
P. H.
, and
Antinoro
,
F.
(
1971
). “
The effects of signal rise time and duration on the early components of the auditory evoked cortical response
,”
J. Speech Hear. Res.
14
,
552
558
.
30.
Thornton
,
A. R.
,
Mendel
,
M. I.
, and
Anderson
,
C. V.
(
1977
). “
Effects of stimulus frequency and intensity on the middle components of the averaged auditory electroencephalic response
,”
J. Speech Hear. Res.
20
,
81
94
.
31.
Woldorff
,
M. G.
,
Gallen
,
C. C.
,
Hampson
,
S. A.
,
Hillyard
,
S. A.
,
Pantev
,
C.
,
Sobel
,
D.
, and
Bloom
,
F. E.
(
1993
). “
Modulation of early sensory processing in human auditory cortex during auditory selective attention
,”
Proc. Natl. Acad. Sci. U.S.A.
90
,
8722
8726
.
32.
Woods
,
D. L.
, and
Clayworth
,
C. C.
(
1985
). “
Click spatial position influences middle latency auditory evoked potentials (MAEPs) in humans
,”
Electroencephalogr. Clin. Neurophysiol.
60
,
122
129
.
33.
Woods
,
D. L.
,
Alain
,
C.
,
Covarrubias
,
D.
, and
Zadiel
,
O.
(
1993
). “
Frequency-related differences in the speed of human auditory processing
,”
Hear. Res.
66
,
46
52
.
34.
Woods
,
D. L.
,
Alain
,
C.
,
Covarrubias
,
D.
, and
Zadiel
,
O.
(
1995
). “
Middle latency auditory evoked potentials to tones of different frequency
,”
Hear. Res.
85
,
69
75
.
This content is only available via PDF.
You do not currently have access to this content.