The test performance of a wideband acoustic transfer function (ATF) test and 226-Hz tympanometry was assessed in predicting the presence of conductive hearing loss, based on an air–bone gap of 20 dB or more. Two ATF tests were designed using an improved calibration method over a frequency range (0.25–8 kHz): an ambient-pressure test and a tympanometric test using an excess static pressure in the ear canal. Wideband responses were objectively classified using moment analyses of energy transmittance, which was a more appropriate test variable than energy reflectance. Subjects included adults and children of age 10 years and up, with 42 normal-functioning ears and 18 ears with a conductive hearing loss. Predictors were based on the magnitudes of the moment deviations from the 10th to 90th percentiles of the normal group. Comparing tests at a fixed specificity of 0.90, the sensitivities were 0.28 for peak-compensated static acoustic admittance at 226 Hz, 0.72 for ambient-pressure ATF, and 0.94 for pressurized ATF. Pressurized ATF was accurate at predicting conductive hearing loss with an area under the receiver operating characteristic curve of 0.95. Ambient-pressure ATF may have sufficient accuracy to use in some hearing-screening applications, whereas pressurized ATF has additional accuracy that may be appropriate for hearing-diagnostic applications.

1.
Agulló
,
J.
,
Cardona
,
S.
, and
Keefe
,
D. H.
(
1995
). “
Time-domain deconvolution to measure reflection functions from discontinuities in waveguides
,”
J. Acoust. Soc. Am.
97
,
1950
1957
.
2.
American Speech-Language-Hearing Association
(
1990
). “
Guidelines for screening for hearing impairments and middle-ear disorders
,”
ASHA
32
(Suppl. 2),
17
24
.
3.
Bamber
,
D.
(
1975
). “
The area above the ordinal dominance graph and the area below the receiver operating characteristic graph
,”
J. Math. Psychol.
12
,
387
415
.
4.
Benade
,
A. H.
(
1968
). “
On the propagation of sound waves in a cylindrical conduit
,”
J. Acoust. Soc. Am.
44
,
616
623
.
5.
Cohen, L. (1995). Time-Frequency Analysis (Prentice-Hall, New York).
6.
Feeney
,
M. P.
,
Grant
,
I. L.
, and
Marryott
,
L. P.
(
2003
). “
Wideband energy reflectance measurements in adults with middle-ear disorders
,”
J. Speech Lang. Hear. Res.
4
,
901
911
.
7.
Hanley
,
J. A.
, and
NcNeil
,
B. J.
(
1982
). “
The meaning and use of the area under a receiver operating characteristic (ROC) curve
,”
Radiology
143
,
29
36
.
8.
Holte
,
L.
,
Margolis
,
R. H.
, and
Cavanaugh
, Jr.,
R. M.
(
1991
). “
Developmental changes in multifrequency tympanograms
,”
Audiology
30
,
1
24
.
9.
Huang
,
G. T.
,
Rosowski
,
J. J.
,
Puria
,
S.
, and
Peake
,
W. T.
(
2000
). “
A noninvasive method for estimating acoustic admittance at the tympanic membrane
,”
J. Acoust. Soc. Am.
108
,
1128
1146
.
10.
Keefe
,
D. H.
(
1984
). “
Acoustical wave propagation in cylindrical ducts: Transmission line parameter approximations for isothermal and non-isothermal boundary conditions
,”
J. Acoust. Soc. Am.
75
,
58
62
.
11.
Keefe
,
D. H.
(
1996
). “
Wind-instrument reflection function measurements in the time domain
,”
J. Acoust. Soc. Am.
99
,
2370
2381
;
Keefe
,
D. H.
,
J. Acoust. Soc. Am.
100
,
3985
(E) (
1996
).
12.
Keefe
,
D. H.
(
1997
). “
Otoreflectance of the cochlea and middle ear
,”
J. Acoust. Soc. Am.
102
,
2849
2859
.
13.
Keefe
,
D. H.
, and
Benade
,
A. H.
(
1981
). “
Impedance measurement source and microphone proximity effects
,”
J. Acoust. Soc. Am.
69
,
1489
1495
.
14.
Keefe
,
D. H.
,
Bulen
,
J. D.
,
Hoberg Arehart
,
K.
, and
Burns
,
E. M.
(
1993
). “
Ear-canal impedance and reflection coefficient of human infants and adults
,”
J. Acoust. Soc. Am.
94
,
2617
2638
.
15.
Keefe
,
D. H.
,
Folsom
,
R. C.
,
Gorga
,
M. P.
,
Vohr
,
B. R.
,
Bulen
,
J. C.
, and
Norton
,
S. J.
(
2000
). “
Identification of neonatal hearing impairment: Ear-canal measurements of acoustic admittance and reflectance in neonates
,”
Ear Hear.
21
,
443
461
.
16.
Keefe
,
D. H.
,
Gorga
,
M. P.
,
Neely
,
S. T.
,
Zhao
,
F.
, and
Vohr
,
B. R.
(
2003b
). “
Ear-canal acoustic admittance and reflectance measurements in human neonates. II. Predictions of middle-ear dysfunction and sensorineural hearing loss
,”
J. Acoust. Soc. Am.
113
,
407
444
.
17.
Keefe
,
D. H.
, and
Levi
,
E.
(
1996
). “
Maturation of the middle and external ears: Acoustic power-based responses and reflectance tympanometry
,”
Ear Hear.
17
,
361
373
.
18.
Keefe
,
D. H.
, and
Ling
,
R.
(
1998
). “
Double-evoked otoacoustic emissions. II. Intermittent noise rejection, calibration, and ear-canal measurements
,”
J. Acoust. Soc. Am.
103
,
3499
3508
.
19.
Keefe
,
D. H.
,
Ling
,
R.
, and
Bulen
,
J. C.
(
1992
). “
Method to measure acoustic impedance and reflection coefficient
,”
J. Acoust. Soc. Am.
91
,
470
485
.
20.
Keefe
,
D. H.
,
Zhao
,
F.
,
Neely
,
S. T.
,
Gorga
,
M. P.
, and
Vohr
,
B. R.
(
2003a
). “
Ear-canal acoustic admittance and reflectance effects in human neonates. I. Predictions of otoacoustic emission and auditory brainstem responses
,”
J. Acoust. Soc. Am.
113
,
389
406
.
21.
Margolis
,
R. H.
, and
Goycoolea
,
H. G.
(
1993
). “
Multifrequency tympanometry in normal adults
,”
Ear Hear.
14
,
408
413
.
22.
Margolis, R. H., and Hunter, L. L. (2000). “Acoustic immittance measurements,” in Audiology: Diagnosis, edited by R. J. Roeser, M. Valente, and H. Hosford-Dunn (Thieme Medical, New York).
23.
Margolis
,
R. H.
,
Paul
,
S.
,
Saly
,
G. L.
,
Schachern
,
P. A.
, and
Keefe
,
D. H.
(
2001
). “
Wideband reflectance tympanometry in chinchillas and humans
,”
J. Acoust. Soc. Am.
110
,
1453
1464
.
24.
Margolis
,
R. H.
,
Saly
,
G. L.
, and
Keefe
,
D. H.
(
1999
). “
Wideband reflectance tympanometry in normal adults
,”
J. Acoust. Soc. Am.
106
,
265
280
.
25.
Morse, P. M., and Ingard, K. U. (1968). Theoretical Acoustics (McGraw-Hill, New York).
26.
Piskorski
,
P.
,
Keefe
,
D. H.
,
Simmons
,
J. L.
, and
Gorga
,
M. P.
(
1999
). “
Prediction of conductive hearing loss based on acoustic ear-canal response using a multivariate clinical decision theory
,”
J. Acoust. Soc. Am.
105
,
1749
1764
.
27.
Polack
,
J.-D.
,
Meynial
,
X.
,
Kergomard
,
J.
,
Cosuard
,
C.
, and
Bruneau
,
M.
(
1987
). “
Reflection function of a plane sound wave in a cylindrical tube
,”
Rev. Phys. Appl.
22
,
331
337
.
28.
Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P. (1992). Numerical Recipes in C: The Art of Scientific Computing, 2nd ed. (Cambridge University Press, Cambridge).
29.
Rabiner, L. R., and Schafer, R. W. (1978). Digital Processing of Speech Signals (Prentice-Hall, Englewood Cliffs, NJ).
30.
Schairer
,
K. S.
,
Fitzpatrick
,
D.
, and
Keefe
,
D. H.
(
2003
). “
Input–output functions for stimulus–frequency otoacoustic emissions in normal-hearing adult ears
,”
J. Acoust. Soc. Am.
114
,
944
966
.
31.
Sininger
,
Y. S.
,
Cone-Wesson
,
B.
,
Folsom
,
R. C.
,
Gorga
,
M. P.
,
Vohr
,
B. R.
,
Widen
,
J. E.
,
Ekelid
,
M.
, and
Norton
,
S. J.
(
2000
). “
Identification of neonatal hearing impairment: Auditory brain stem responses in the perinatal period
,”
Ear Hear.
21
,
383
399
.
32.
Song
,
H. H.
(
1997
). “
Analysis of correlated ROC areas in diagnostic testing
,”
Biometrics
53
,
370
382
.
33.
Stinson
,
M. R.
,
Shaw
,
E. A. G.
, and
Lawon
,
B. W.
(
1982
). “
Estimation of acoustical energy reflectance at the eardrum from measurements of pressure distribution in the human ear canal
,”
J. Acoust. Soc. Am.
72
,
766
773
.
34.
Swets, J. A., and Pickett, R. M. (1982). Evaluation of Diagnostic Systems: Methods from Signal Detection Theory (Academic, New York).
35.
Van Camp, K. J., Margolis, R. H., Wilson, R. H., Creten, W. L., and Shanks, J. E. (1986). Principles of Tympanometry, ASHA Monographs Number 24 (American Speech-Language-Hearing Association, Rockville).
36.
Vanhuyse
,
V. J.
,
Creten
,
W. L.
, and
Van Camp
,
K. J.
(
1975
). “
On the W-notching of tympanograms
,”
Scand. Audiol.
4
,
45
50
.
37.
Voss
,
S. E.
, and
Allen
,
J. B.
(
1994
). “
Measurement of acoustic impedance and reflectance in the human ear canal
,”
J. Acoust. Soc. Am.
95
,
372
384
.
38.
Voss
,
S. E.
,
Rosowski
,
J. J.
,
Merchant
,
S. N.
,
Thornton
,
A. R.
,
Shera
,
C. A.
, and
Peake
,
W. T.
(
2000
). “
Middle-ear pathology can affect the ear-canal sound pressure generated by audiologic earphones
,”
Ear Hear.
21
,
265
274
.
39.
Voss
,
S. E.
,
Rosowski
,
J. J.
,
Merchant
,
S. N.
, and
Peake
,
W. T.
(
2001
). “
Middle-ear function with tympanic-membrane perforations. I. Measurements and mechanisms
,”
J. Acoust. Soc. Am.
110
,
1432
1444
.
This content is only available via PDF.
You do not currently have access to this content.