Rubinstein et al. [Hear. Res. 127, 108–118 (1999)] suggested that the neural representation of the waveforms of electric stimuli might be improved by introducing an ongoing, high-rate, desynchronizing pulse train (DPT). A DPT may desynchronize neural responses to electric stimulation in a manner similar to spontaneous activity in a healthy ear. To test this hypothesis, responses of auditory-nerve fibers (ANFs) to 10-min-long electric pulse trains (5 kpps) were recorded from acutely deafened, anesthetized cats. Stimuli were delivered via an intracochlear electrode, and their amplitude was chosen to elicit a response in most ANFs. Responses to pulse trains showed pronounced adaptation during the first 1–2 min, followed by either a sustained response or cessation of spike discharges for the remainder of the stimulus. The adapted discharge rates showed a broad distribution across the ANF population like spontaneous activity. However, a higher proportion of fibers (46%) responded to the DPT at rates below 5 spikes/s than for spontaneous activity, and 12% of the fibers responded at higher rates than any spontaneously active fiber. Interspike interval histograms of sustained responses for some fibers had Poisson-like (exponential) shapes, resembling spontaneous activity, while others exhibited preferred intervals and, occasionally, bursting. Simultaneous recordings from pairs of fibers revealed no evidence of correlated activity, suggesting that the DPT does desynchronize the auditory nerve activity. Overall, these results suggest that responses to an ongoing DPT resemble spontaneous activity in a normal ear for a substantial fraction of the ANFs.

1.
Cox, D. R. (1967). Renewal Theory (Methuen, London).
2.
Duckert
,
L. G.
, and
Miller
,
J. M.
(
1982
). “
Acute morphological changes in guinea pig cochlea following electrical stimulation. A preliminary scanning electron microscope study
,”
Ann. Otol. Rhinol. Laryngol.
91
,
33
40
.
3.
Dynes
,
S. B. C.
, and
Delgutte
,
B.
(
1992
). “
Phase-locking of auditory-nerve discharges to sinusoidal electric stimulation of the cochlea
,”
Hear. Res.
58
,
79
90
.
4.
Efron, B., and Tibshirani, R. (1993). An introduction to the bootstrap (Chapman and Hall, New York).
5.
Gaumond, R. P. (1980). “Studies of the stimulus and recovery dependence of cat cochlear nerve fiber discharge probability,” Ph.D. thesis, Washington University, St. Louis, MO.
6.
Good, P. I. (2000). Permutation Tests: A Practical Guide to Resampling Methods for Testing Hypotheses (Springer-Verlag, New York).
7.
Guttman
,
R.
, and
Barnhill
,
J.
(
1970
). “
Oscillation and repetitive firing in squid axons. Comparison of experiments with computations
,”
J. Gen. Physiol.
55
,
104
118
.
8.
Guttman
,
R.
,
Lewis
,
S.
, and
Rinzel
,
J.
(
1980
). “
Control of repetitive firing in squid axon membrane as a model for a neuroneoscillator
,”
J. Physiol. (London)
305
,
377
395
.
9.
Hartmann
,
R.
,
Topp
,
G.
, and
Klinke
,
R.
(
1984
). “
Discharge patterns of cat primary auditory fibers with electrical stimulation of the cochlea
,”
Hear. Res.
13
,
47
62
.
10.
Javel, E. (1990). “Acoustic and Electrical Encoding of Temporal Information,” in Cochlear Implants. Models of the Electrically Stimulated Ear, edited by J. M. Miller and F. A. Spelman (Springer-Verlag, New York), pp. 247–295.
11.
Javel
,
E.
, and
Shepherd
,
R. K.
(
2000
). “
Electrical stimulation of the auditory nerve. III. Response initiation sites and temporal fine structure
,”
Hear. Res.
140
,
45
76
.
12.
Javel
,
E.
,
Tong
,
Y. C.
,
Shepherd
,
R. K.
, and
Clark
,
G. M.
(
1987
). “
Responses of cat auditory nerve fibers to biphasic electrical current pulses
,”
Ann. Otol. Rhinol. Laryngol. Suppl.
128
,
26
30
.
13.
Johnson
,
D. H.
(
1996
). “
Point process models of single-neuron discharges
,”
J. Comput. Neurosci.
3
,
275
299
.
14.
Johnson
,
D. H.
, and
Kiang
,
N. Y. S.
(
1976
). “
Analysis of discharges recorded simultaneously from pairs of auditory nerve fibers
,”
Biophys. J.
16
,
719
734
.
15.
Kelly
,
O. E.
,
Johnson
,
D. H.
,
Delgutte
,
B.
, and
Cariani
,
P.
(
1996
). “
Fractal noise strength in auditory-nerve fiber recordings
,”
J. Acoust. Soc. Am.
99
,
2210
2220
.
16.
Kiang, N. Y. S., Moxon, E., and Levine, R. (1970). “Auditory-nerve activity in cats with normal and abnormal cochleas,” in Sensorineural Hearing Loss, CIBA Found. Symp., pp. 241–273.
17.
Kiang, N. Y. S., Watanabe, T., Thomas, E. C., and Clark, T. F. (1965). Discharge Patterns of Single Fibers in the Cat’s Auditory Nerve (MIT, Cambridge, MA).
18.
Killian, M. J. P. (1994). “Excitability of the Electrically Stimulated Auditory Nerve,” Ph.D. thesis, University of Utrecht.
19.
Knauth
,
M.
,
Hartmann
,
R.
, and
Klinke
,
R.
(
1994
). “
Discharge pattern in the auditory nerve evoked by vowel stimuli: a comparison between acoustical and electrical stimulation
,”
Hear. Res.
74
,
247
258
.
20.
Liberman
,
M. C.
(
1978
). “
Auditory-nerve response from cats raised in a low-noise chamber
,”
J. Acoust. Soc. Am.
63
,
442
455
.
21.
Liberman
,
M. C.
(
1990
). “
Effects of chronic cochlear de-efferentation on auditory-nerve response
,”
Hear. Res.
49
,
209
224
.
22.
Liberman
,
M. C.
, and
Kiang
,
N. Y. S.
(
1978
). “
Acoustic trauma in cats. Cochlear pathology and auditory-nerve activity
,”
Acta Oto-Laryngol., Suppl.
358
,
1
63
.
23.
Liberman
,
M. C.
, and
Oliver
,
M. E.
(
1984
). “
Morphometry of intracellularly labeled neurons of the auditory nerve: Correlations with functional properties
,”
J. Comp. Neurol.
223
,
163
176
.
24.
Litvak
,
L. M.
,
Delgutte
,
B.
, and
Eddington
,
D. K.
(
2001
). “
Auditory nerve fiber responses to electric stimulation: modulated and unmodulated pulse trains
,”
J. Acoust. Soc. Am.
110
,
368
379
.
25.
Litvak
,
L. M.
,
Delgutte
,
B.
, and
Eddington
,
D. K.
(
2003a
). “
Improved temporal coding of sinusoids in electric stimulation of the auditory nerve using desynchronizing pulse trains
,”
J. Acoust. Soc. Am.
114
,
2079
2098
.
26.
Litvak
,
L. M.
,
Delgutte
,
B.
, and
Eddington
,
D. K.
(
2003b
). “
Improved neural representation of vowels in electric stimulation using desynchronizing pulse trains
,”
J. Acoust. Soc. Am.
114
,
2099
2111
.
27.
Lowen
,
S. B.
, and
Teich
,
M. C.
(
1992
). “
Auditory-nerve action potentials form a non renewal point process over short as well as long time scales
,”
J. Acoust. Soc. Am.
92
,
803
806
.
28.
Miller
,
C. A.
,
Abbas
,
P. J.
,
Robinson
,
B. K.
,
Rubinstein
,
J. T.
, and
Matsuoka
,
A. J.
(
1999
). “
Electrically evoked single-fiber action potentials from cat: responses to monopolar, monophasic stimulation
,”
Hear. Res.
130
,
197
218
.
29.
Miller
,
M. I.
, and
Wang
,
J.
(
1993
). “
A new stochastic model for auditory-nerve discharge
,”
J. Acoust. Soc. Am.
94
,
2093
2107
.
30.
Moxon, E. C. (1967). “Electric stimulation of the cat’s cochlea: a study of discharge rates in single auditory nerve fibers,” M.S. thesis. MIT, Cambridge, MA.
31.
Parkins
,
C. W.
(
1989
). “
Temporal response patterns of auditory nerve fibers to electrical stimulation in deafened squirrel monkeys
,”
Hear. Res.
41
,
137
169
.
32.
Perkel
,
D. H.
,
Gerstein
,
G. L.
, and
Moore
,
G. P.
(
1967
). “
Neuronal spike trains and stochastic point processes. II. Simultaneous spike trains
,”
Biophys. J.
7
,
419
440
.
33.
Rodieck
,
R.
,
Kiang
,
N. Y. S.
, and
Gerstein
,
G. L.
(
1962
). “
Some quantitative methods for the study of spontaneous activity of single neurons
,”
Biophys. J.
2
,
351
368
.
34.
Rosen
,
S.
(
1992
). “
Temporal information in speech: acoustic, auditory and linguistic aspects
,”
Philos. Trans. R. Soc. Lond. B Biol. Sci.
336
,
367
373
.
35.
Rubinstein
,
J. T.
(
1991
). “
Analytical theory for extracellular electrical stimulation of nerve with focal electrodes. II. Passive myelinated axon
,”
Biophys. J.
60
,
538
555
.
36.
Rubinstein
,
J. T.
,
Tyler
,
R. S.
,
Johnson
,
A.
, and
Brown
,
C. J.
(2003). “Electrical suppression of tinnitus with high-rate pulse trains,” Otol. Neurotol. 24, 478–485.
37.
Rubinstein
,
J. T.
,
Wilson
,
B. S.
,
Finley
,
C. C.
, and
Abbas
,
P. J.
(
1999
). “
Pseudospontaneous activity: stochastic independence of auditory nerve fibers with electrical stimulation
,”
Hear. Res.
127
,
108
118
.
38.
Schneidman
,
E.
,
Freedman
,
B.
, and
Segev
,
I.
(
1998
). “
Ion channel stochasticity may be critical in determining the reliability and precision of spike timing
,”
Neural Comput.
10
,
1679
1703
.
39.
Shepherd, R. K. (1986). “Cochlear Prosthesis: Safety Investigations,” Ph.D. thesis, University of Melbourne.
40.
Shepherd
,
R. K.
, and
Javel
,
E.
(
1997
). “
Electrical stimulation of the auditory nerve. I. Correlation of physiological responses with cochlear status
,”
Hear. Res.
108
,
112
144
.
41.
Taylor
,
M. M.
, and
Creelman
,
C. D.
(
1967
). “
PEST: Efficient estimates on probability functions
,”
J. Acoust. Soc. Am.
41
,
782
787
.
42.
Teich
,
M. C.
, and
Khanna
,
S. M.
(
1985
). “
Pulse-number distribution for the neural spike train in the cat’s auditory nerve
,”
J. Acoust. Soc. Am.
77
,
1110
1128
.
43.
Tykocinski
,
M.
,
Shepherd
,
R. K.
, and
Clark
,
G. M.
(
1995a
). “
Electrophysiologic effects following acute intracochlear direct current stimulation of the guinea pig cochlea
,”
Ann. Otol. Rhinol. Laryngol. Suppl.
166
,
68
71
.
44.
Tykocinski
,
M.
,
Shepherd
,
R. K.
, and
Clark
,
G. M.
(
1995b
). “
Reduction in excitability of the auditory nerve following electrical stimulation at high stimulus rates
,”
Hear. Res.
88
,
124
142
.
45.
Tykocinski
,
M.
,
Shepherd
,
R. K.
, and
Clark
,
G. M.
(
1997
). “
Reduction in excitability of the auditory nerve following electrical stimulation at high stimulus rates. II. Comparison of fixed amplitude with amplitude modulated stimuli
,”
Hear. Res.
112
,
147
157
.
46.
van den Honert
,
C.
, and
Stypulkowski
,
P. H.
(
1984
). “
Physiological properties of the electrically stimulated auditory nerve. II. Single fiber recordings
,”
Hear. Res.
14
,
225
243
.
47.
van den Honert
,
C.
, and
Stypulkowski
,
P. H.
(
1987
). “
Temporal response patterns of single auditory nerve fibers elicited by periodic electrical stimuli
,”
Hear. Res.
29
,
207
222
.
48.
Van Tasell
,
D. J.
,
Soli
,
S. D.
,
Kirby
,
V. M.
, and
Widin
,
G. P.
(
1987
). “
Speech waveform envelope cues for consonant recognition
,”
J. Acoust. Soc. Am.
82
,
1152
1161
.
49.
Van Tasell
,
D. J.
,
Greenfield
,
D. G.
,
Logemann
,
J. J.
, and
Nelson
,
D. A.
(
1992
). “
Temporal cues for consonant recognition: Training, talker generalization, and use in evaluation of cochlear implants
,”
J. Acoust. Soc. Am.
92
,
1247
1257
.
50.
Walsh
,
B. T.
,
Miller
,
J. B.
,
Gacek
,
R. R.
, and
Kiang
,
N. Y. S.
(
1972
). “
Spontaneous activity in the eighth cranial nerve of the cat
,”
Int. J. Neurosci.
3
,
221
236
.
51.
Wiesenfeld
,
K.
, and
Moss
,
F.
(
1995
). “
Stochastic resonance and the benefits of noise: from ice ages to crayfish and SQUIDs
,”
Nature (London)
373
,
33
36
.
52.
Wilson
,
B.
,
Finley
,
C. C.
,
Lawson
,
D. T.
, and
Zebri
,
M.
(
1997
). “
Temporal representations with cochlear implants
,”
Am. J. Otol.
18
, Suppl. 6,
S30
S34
.
53.
Wilson
,
B. S.
,
Finley
,
C. C.
,
Lawson
,
D. T.
,
Wolford
,
R. D.
,
Eddington
,
D. K.
, and
Rabinowitz
,
W. M.
(
1991
). “
Better speech recognition with cochlear implants
,”
Nature (London)
352
,
236
238
.
54.
Xu
,
S. A.
,
Shepherd
,
R. K.
,
Chen
,
Y.
, and
Clark
,
G. M.
(
1993
). “
Profound hearing loss in the cat following the single co-administration of kanamycin and ethacrynic acid
,”
Hear. Res.
70
,
205
215
.
This content is only available via PDF.
You do not currently have access to this content.