A computational model was developed to simulate the responses of auditory-nerve (AN) fibers in cat. The model’s signal path consisted of a time-varying bandpass filter; the bandwidth and gain of the signal path were controlled by a nonlinear feed-forward control path. This model produced realistic response features to several stimuli, including pure tones, two-tone combinations, wideband noise, and clicks. Instantaneous frequency glides in the reverse-correlation (revcor) function of the model’s response to broadband noise were achieved by carefully restricting the locations of the poles and zeros of the bandpass filter. The pole locations were continuously varied as a function of time by the control signal to change the gain and bandwidth of the signal path, but the instantaneous frequency profile in the revcor function was independent of sound pressure level, consistent with physiological data. In addition, this model has other important properties, such as nonlinear compression, two-tone suppression, and reasonable Q10 values for tuning curves. The incorporation of both the level-independent frequency glide and the level-dependent compressive nonlinearity into a phenomenological model for the AN was the primary focus of this work. The ability of this model to process arbitrary sound inputs makes it a useful tool for studying peripheral auditory processing.

1.
Anderson
,
D. J.
,
Rose
,
J. E.
,
Hind
,
J. E.
, and
Brugge
,
J. F.
(
1971
). “
Temporal position of discharges in single auditory nerve fibers within the cycle of a sine-wave stimulus: Frequency and intensity effects
,”
J. Acoust. Soc. Am.
49
,
1131
1139
.
2.
Arthur
,
M. A.
,
Pfeiffer
,
R. R.
, and
Suga
,
N.
(
1970
). “
Properties of ‘two-tone inhibition’ in primary auditory neurons
,”
J. Physiol.
212
,
593
1139
.
3.
Bruce
,
I. C.
,
Sachs
,
M. B.
, and
Young
,
E. D.
(
2003
). “
An auditory-periphery model of the effects of acoustic trauma on auditory nerve responses
,”
J. Acoust. Soc. Am.
113
,
369
388
.
4.
Carney
,
L. H.
(
1993
). “
A model for the responses of low-frequency auditory nerve fibers in cat
,”
J. Acoust. Soc. Am.
93
,
401
417
.
5.
Carney
,
L. H.
(
1994
). “
Spatiotemporal encoding of sound level: Models for normal encoding and recruitment of loudness
,”
Hear. Res.
76
,
31
44
.
6.
Carney
,
L. H.
(
1999
). “
Temporal response properties of neurons in the auditory pathway
,”
Curr. Opin. Neurobiol.
9
,
442
446
.
7.
Carney
,
L. H.
, and
Yin
,
T. C. T.
(
1988
). “
Temporal coding of resonances by low-frequency auditory nerve fibers: Single fiber responses and a population model
,”
J. Neurophysiol.
60
,
1653
1677
.
8.
Carney
,
L. H.
,
McDuffy
,
M. J.
, and
Shekhter
,
I.
(
1999
). “
Frequency glides in the impulse responses of auditory-nerve fibers
,”
J. Acoust. Soc. Am.
105
,
2384
2391
.
9.
Cheatham
,
M. A.
, and
Dallos
,
P.
(
1999
). “
Response phase: A view from the inner hair cell
,”
J. Acoust. Soc. Am.
105
,
799
810
.
10.
Cheatham
,
M. A.
, and
Dallos
,
P.
(
2001
). “
Inner hair cell response patterns: implications for low-frequency hearing
,”
J. Acoust. Soc. Am.
110
,
2034
2044
.
11.
Colburn, H. S., Carney, L. H., and Heinz, M. G. (2003, in press). “Quantifying the information in auditory-nerve responses for level discrimination,” JARO.
12.
de Boer
,
E.
(
1997
). “
Connecting frequency selectivity and nonlinearity for models of the cochlea
,”
Aud. Neurosci.
3
,
377
388
.
13.
de Boer
,
E.
, and
de Jongh
,
H. R.
(
1978
). “
On cochlear encoding: Potentialities and limitations of the reverse-correlation technique
,”
J. Acoust. Soc. Am.
63
,
115
135
.
14.
de Boer
,
E.
, and
Nuttall
,
A. L.
(
1997
). “
The mechanical waveform of the basilar membrane. I. Frequency modulations (glides) in impulse responses and cross-correlation functions
,”
J. Acoust. Soc. Am.
101
,
3583
3592
.
15.
de Boer
,
E.
, and
Nuttall
,
A. L.
(
2000
). “
The mechanical waveform of the basilar membrane. III. Intensity effects
,”
J. Acoust. Soc. Am.
107
,
1497
1507
.
16.
Delgutte
,
B.
(
1990
). “
Two-tone rate suppression in auditory-nerve fibers: Dependence on suppressor frequency and level
,”
Hear. Res.
49
,
225
246
.
17.
Evans, E. F. (1977). “Frequency selectivity at high signal levels of single units in cochlear nerve and nucleus,” in Psychophysics and Physiology of Hearing, edited by E. F. Evans and J. P. Wilson (Academic, London), pp. 185–192.
18.
Geisler
,
C. D.
, and
Sinex
,
D. G.
(
1980
). “
Responses of primary auditory fibers to combined noise and tonal stimuli
,”
Hear. Res.
3
,
317
334
.
19.
Goldstein
,
J. L.
(
1990
). “
Modeling rapid wave form compression on the basilar membrane as multiple-band-pass-nonlinearity filtering
,”
Hear. Res.
49
,
39
60
.
20.
Goldstein
,
J. L.
(
1995
). “
Relations among compression, suppression, and combination tones in mechanical responses of the basilar membrane: data and MBPNL model
,”
Hear. Res.
89
,
52
68
.
21.
Heinz
,
M. G.
,
Colburn
,
H. S.
, and
Carney
,
L. H.
(
2001a
). “
Evaluating auditory performance limits: I. One-parameter discrimination using a computational model for the auditory nerve
,”
Neural Comput.
13
,
2273
2316
.
22.
Heinz
,
M. G.
,
Colburn
,
H. S.
, and
Carney
,
L. H.
(
2001b
). “
Rate and timing cues associated with the cochlear amplifier: Level discrimination based on Monaural cross-frequency concidence detection
,”
J. Acoust. Soc. Am.
110
,
2065
2084
.
23.
Heinz
,
M. G.
,
Colburn
,
H. S.
, and
Carney
,
L. H.
(
2002
). “
Quantifying the implications of nonlinear cochlear tuning for auditory-filter estimates
,”
J. Acoust. Soc. Am.
111
,
996
1011
.
24.
Heinz
,
M. G.
,
Zhang
,
X.
,
Bruce
,
I. C.
, and
Carney
,
L. H.
(
2001c
). “
Auditory-nerve model for predicting performance limits of normal and impaired listeners
,”
ARLO
2
,
91
96
.
25.
Irino
,
T.
, and
Patterson
,
R. D.
(
1997
). “
A time-domain, level-dependent auditory filter: the gammachirp
,”
J. Acoust. Soc. Am.
101
,
412
419
.
26.
Irino
,
T.
, and
Patterson
,
R. D.
(
2001
). “
A compressive gammachirp auditory filter for both physiological and psychophysical data
,”
J. Acoust. Soc. Am.
109
,
2008
2022
.
27.
Johnson
,
D. H.
(
1980
). “
The relationship between spike rate and synchrony in responses of auditory-nerve fibers to single tones
,”
J. Acoust. Soc. Am.
68
,
1115
1122
.
28.
Kiang
,
N. Y. S.
, and
Moxon
,
E. C.
(
1974
). “
Tails of tuning curves of auditory-nerve fibers
,”
J. Acoust. Soc. Am.
55
,
620
630
.
29.
Kiang, N. Y. S., Watanabe, T., Thomas, E. C., and Clark, L. F. (1965). “Discharge patterns of single fibers in the cat’s auditory nerve,” MIT Research Monograph No. 35 (MIT, Cambridge, MA).
30.
Liberman
,
M. C.
(
1978
). “
Auditory-nerve responses from cats raised in a low-noise chamber
,”
J. Acoust. Soc. Am.
63
,
442
455
.
31.
Lin
,
T.
, and
Guinan
,
J. J.
(
2000
). “
Auditory-nerve-fiber responses to high-level clicks: Interference patterns indicate that excitation is due to the combination of multiple drives
,”
J. Acoust. Soc. Am.
107
,
2615
2630
.
32.
Marquardt
,
D. W.
(
1963
). “
An Algorithm for Least-Squares Estimation of Nonlinear Parameters
,”
J. Soc. Ind. Appl. Math.
11
,
431
441
.
33.
Meddis
,
R.
,
O’Mard
,
L. P.
, and
Lopez-Poveda
,
E. A.
(
2001
). “
A computational algorithm for computing nonlinear auditory frequency selectivity
,”
J. Acoust. Soc. Am.
109
,
2852
2861
.
34.
Miller
,
R. L.
,
Schilling
,
J. R.
,
Franck
,
K. R.
, and
Young
,
E. D.
(
1997
). “
Effects of acoustic trauma on the representation of the vowel /ε/ in cat auditory nerve fibers
,”
J. Acoust. Soc. Am.
101
,
3602
3616
.
35.
Møller
,
A. R.
(
1977
). “
Frequency selectivity of single auditory-nerve fibers in response to broadband noise stimuli
,”
J. Acoust. Soc. Am.
62
,
135
142
.
36.
Mountain, D. C., and Hubbard, A. E. (1996). “Computational analysis of hair cell and auditory nerve processes,” in Auditory Computation, edited by H. L. Hawkins, T. A. McMullen, A. N. Popper, and R. R. Fay (Springer-Verlag, New York), pp. 121–156.
37.
Nomoto
,
M.
,
Suga
,
N.
, and
Katsuki
,
Y.
(
1964
). “
Discharge pattern and inhibition of primary auditory nerve fibers in the monkey
,”
J. Neurophysiol.
27
,
768
787
.
38.
Patuzzi, R. (1996). “Cochlear micromechanics and macromechanics,” in The Cochlea, edited by P. Dallos, A. N. Popper, and R. R. Fay (Springer-Verlag, New York), pp. 186–257.
39.
Pfeiffer
,
R. R.
(
1970
). “
A model for two-tone inhibition of single cochlear-nerve fibers
,”
J. Acoust. Soc. Am.
48
,
1373
.
40.
Recio, A., Narayan, S. S., and Ruggero, M. A. (1997). “Wiener-kernel analysis of basilar membrane response to noise,” in Diversity in Auditory Mechanics, edited by E. R. Lewis, G. R. Long, R. F. Lyon, P. M. Narins, C. R. Steele, and E. Hecht-Poinar (World Scientific, Singapore), pp. 325–331.
41.
Recio
,
A.
,
Narayan
,
S. S.
, and
Ruggero
,
M. A.
(
1998
). “
Basilar-membrane responses to clicks at the base of the chinchilla cochlea
,”
J. Acoust. Soc. Am.
103
,
1972
1989
.
42.
Rhode
,
W. S.
(
1971
). “
Observations of the vibration of the basilar membrane in squirrel monkeys using the Mossbauer technique
,”
J. Acoust. Soc. Am.
49
,
1218
1231
.
43.
Rhode
,
W. S.
, and
Cooper
,
N. P.
(
1996
). “
Nonlinear mechanics in the apical turn of the chinchilla
,”
Aud. Neurosci.
3
,
101
120
.
44.
Robert
,
A.
, and
Eriksson
,
J. L.
(
1999
). “
A composite model of the auditory periphery for simulating responses to complex sounds
,”
J. Acoust. Soc. Am.
106
,
1852
1864
.
45.
Robles
,
L.
,
Rhode
,
W. S.
, and
Geisler
,
C. D.
(
1976
). “
Transient response of the basilar membrane measured in squirrel monkeys using the Mossbauer effect
,”
J. Acoust. Soc. Am.
59
,
926
939
.
46.
Rosowski, J. J. (1996). “Models of External- and Middle-Ear Function,” in Auditory Computation, edited by H. L. Hawkins, T. A. McMullen, A. N. Popper, and R. R. Fay (Springer-Verlag, New York), pp. 15–61.
47.
Ruggero
,
M. A.
, and
Rich
,
N. C.
(
1991
). “
Furosemide alters organ of corti mechanics: evidence for feedback of outer hair cells upon the basilar membrane
,”
J. Neurosci.
11
,
1057
1067
.
48.
Ruggero
,
M. A.
,
Rich
,
N. C.
,
Recio
,
A.
,
Narayan
,
S. S.
, and
Robles
,
L.
(
1997
). “
Basilar-membrane responses to tones at the base of the chinchilla cochlea
,”
J. Acoust. Soc. Am.
101
,
2151
2163
.
49.
Sachs
,
M. B.
, and
Kiang
,
N. Y. S.
(
1968
). “
Two-tone inhibition in auditory-nerve fibers
,”
J. Acoust. Soc. Am.
43
,
1120
1128
.
50.
Shekhter
,
I.
, and
Carney
,
L. H.
(
1997
). “
A nonlinear auditory nerve model for CF-dependent shifts in tuning with sound level
,”
Assoc. Res. Otolaryngol.
20
,
617
.
51.
Shera
,
C. A.
(
2001a
). “
Frequency glides in click responses of the basilar membrane and auditory nerve: Their scaling behavior and origin in traveling-wave dispersion
,”
J. Acoust. Soc. Am.
109
,
2023
2034
.
52.
Shera
,
C. A.
(
2001b
). “
Intensity-invariance of fine time structure in basilar-membrane click responses: Implications for cochlear mechanics
,”
J. Acoust. Soc. Am.
110
,
332
348
.
53.
Smith, R. L. (1988). “Encoding of sound intensity by auditory neurons,” in Auditory Function: Neurobiological Bases of Hearing, edited by G. M. Edelman, W. E. Gall, and W. M. Cowan (Wiley, New York), pp. 243–274.
54.
Tan, Q. (2003). “Computational and statistical analysis of auditory peripheral processing for vowel-like signals,” Ph.D. dissertation, Boston University.
55.
Tan, Q., and Carney, L. H. (1999). “A phenomenological model for auditory nerve responses: Including the frequency glide in the impulse response,” Proc. IEEE 25th Annual Northeast Bioengineering Conference, pp. 23–24.
56.
Westerman
,
L. A.
, and
Smith
,
R. L.
(
1988
). “
A diffusion model of the transient response of the cochlear inner hair cell synapse
,”
J. Acoust. Soc. Am.
83
,
2266
2276
.
57.
Zhang
,
X.
,
Heinz
,
M. G.
,
Bruce
,
I. C.
, and
Carney
,
L. H.
(
2001
). “
A phenomenological model for the responses of auditory-nerve fibers. I. Nonlinear tuning with compression and suppression
,”
J. Acoust. Soc. Am.
109
,
648
670
.
This content is only available via PDF.
You do not currently have access to this content.