A cascade thermoacoustic engine is described, consisting of one standing-wave stage plus two traveling-wave stages in series. Most of the acoustic power is produced in the efficient traveling-wave stages. The straight-line series configuration is easy to build and allows no Gedeon streaming. The engine delivers up to 2 kW of acoustic power, with an efficiency (the ratio of acoustic power to heater power) of up to 20%. An understanding of the pressure and volumevelocity waves is very good. The agreement between measured and calculated powers and temperatures is reasonable. Some of the measured thermal power that cannot be accounted for by calculation can be attributed to Rayleigh streaming in the two thermal buffer tubes with the largest aspect ratios. A straightforward extension of this work should yield cascade thermoacoustic engines with efficiencies of around 35–40% of the Carnot efficiency.

1.
Lord
Rayleigh
, “
The explanation of certain acoustical phenomena
,”
Nature (London)
18
,
319
321
(
1878
).
2.
W. A. Marrison, “Heat-controlled acoustic wave system,” U.S. Patent No. 2,836,033, 1958.
3.
R. L. Carter, M. White, and A. M. Steele (private communication of Atomics International Division of North American Aviation Inc., 1962).
See also K. T. Feldman, “A study of heat generated pressure oscillations in a closed end pipe,” Ph.D. dissertation, Mechanical Engineering Department, University of Missouri, 1966.
4.
K. T.
Feldman
, “
Review of the literature on Sondhauss thermoacoustic phenomena
,”
J. Sound Vib.
7
,
71
82
(
1968
), and hard-to-find references therein.
5.
P. H.
Ceperley
, “
A pistonless Stirling engine—The traveling wave heat engine
,”
J. Acoust. Soc. Am.
66
,
1508
1513
(
1979
).
6.
P. H.
Ceperley
, “
Gain and efficiency of a short traveling wave heat engine
,”
J. Acoust. Soc. Am.
77
,
1239
1244
(
1985
).
7.
R. S.
Wakeland
and
R. M.
Keolian
, “
Thermoacoustics with idealized heat exchangers and no stack
,”
J. Acoust. Soc. Am.
111
,
2654
2664
(
2002
).
8.
G. Walker, Stirling Engines (Clarendon, Oxford, 1960).
9.
N.
Rott
, “
Damped and thermally driven acoustic oscillations in wide and narrow tubes
,”
Z. Angew. Math. Phys.
20
,
230
243
(
1969
).
10.
N.
Rott
, “
Thermally driven acoustic oscillations, part III: Second-order heat flux
,”
Z. Angew. Math. Phys.
26
,
43
49
(
1975
).
11.
N.
Rott
, “
Thermoacoustics
,”
Adv. Appl. Mech.
20
,
135
175
(
1980
).
12.
A.
Migliori
and
G. W.
Swift
, “
Liquid sodium thermoacoustic engine
,”
Appl. Phys. Lett.
53
,
355
357
(
1988
).
13.
G. W.
Swift
, “
Analysis and performance of a large thermoacoustic engine
,”
J. Acoust. Soc. Am.
92
,
1551
1563
(
1992
).
14.
T. J.
Hofler
and
M. S.
Reed
, “
Measurements with wire mesh stacks in thermoacoustic prime movers
,”
J. Acoust. Soc. Am.
99
,
2559
2574
(
1996
).
15.
J. A.
Lightfoot
,
W. P.
Arnott
,
H. E.
Bass
, and
R.
Raspet
, “
Experimental study of a radial mode thermoacoustic prime mover
,”
J. Acoust. Soc. Am.
105
,
2652
2662
(
1999
).
16.
T.
Yazaki
,
A.
Iwata
,
T.
Maekawa
, and
A.
Tominaga
, “
Traveling wave thermoacoustic engine in a looped tube
,”
Phys. Rev. Lett.
81
,
3128
3131
(
1998
).
17.
S.
Backhaus
and
G. W.
Swift
, “
A thermoacoustic-Stirling heat engine: Detailed study
,”
J. Acoust. Soc. Am.
107
,
3148
3166
(
2000
).
18.
C. M. de Blok, “Thermoacoustic system, 1998,” Dutch Patent: International Application Number PCT/NL98/00515, U.S. Patent 6,314,740, November 13, 2001.
19.
G. W. Swift, Thermoacoustics: A Unifying Perspective For Some Engines and Refrigerators (Acoustical Society of America Publications, Sewickley, PA, 2002).
20.
T. J. Hofler, “High-efficiency heat-driven acoustic cooling engine with no moving parts, ” U.S. Patent No. 5,901,556, 1999.
21.
A. J. Lesperance, “Hardware modifications and instrumentation of the thermoacoustically driven thermoacoustic refrigerator,” Master’s thesis, U.S. Naval Postgraduate School, Monterey, CA, 1997.
22.
S. Backhaus and G. W. Swift, “Fabrication and use of parallel-plate regenerators in thermoacoustic engines,” in Proceedings of the 36th Intersociety Energy Conversion Engineering Conference (American Society of Mechanical Engineers, New York, NY, 2001), pp. 453–458.
23.
G.
Petculescu
and
L. A.
Wilen
, “
Traveling-wave amplification in a variable standing wave ratio device
,”
Acoustic Research Letters Online
3
,
71
76
(
2002
).
24.
D. Gedeon, “DC gas flows in Stirling and pulse-tube cryocoolers,” in Cryocoolers 9, edited by R. G. Ross (Plenum, New York, 1997), pp. 385–392.
25.
G. W.
Swift
and
J. J.
Wollan
, “Thermoacoustics for liquefaction of natural gas,” GasTIPS 8(4), 21–26 (2002). Also available at www.lanl.gov/thermoacoustics/Pubs/GasTIPS.pdf.
26.
J. R.
Olson
and
G. W.
Swift
, “
Similitude in thermoacoustics
,”
J. Acoust. Soc. Am.
95
,
1405
1412
(
1994
).
27.
Ref. 19, Eq. (4.76).
28.
Boiler and Pressure Vessel Committee of the American Society of Mechanical Engineers, ASME Boiler and Pressure Vessel Code (American Society of Mechanical Engineers, New York, 2001).
29.
Fiberfrax®, Unifrax, Niagara Falls, New York.
30.
Kentucky Metals, New Albany, Indiana.
31.
J. R.
Olson
and
G. W.
Swift
, “
Acoustic streaming in pulse tube refrigerators: Tapered pulse tubes
,”
Cryogenics
37
,
769
776
(
1997
).
32.
Endevco, San Juan Capistrano, CA.
33.
Ohio Semitronics, Hilliard, OH.
34.
W. C.
Ward
and
G. W.
Swift
, “
Design environment for low amplitude thermoacoustic engines (DeltaE)
,”
J. Acoust. Soc. Am.
95
,
3671
3672
(
1994
).
Software and user’s guide available either from the Los Alamos thermoacoustics web site at www.lanl.gov/thermoacoustics/ or from the Energy Science and Technology Software Center, U.S. Department of Energy, Oak Ridge, Tennessee.
35.
I. E. Idelchik, Handbook of Hydraulic Resistance, 3rd ed. (Begell House, New York, 1994).
36.
A. M.
Fusco
,
W. C.
Ward
, and
G. W.
Swift
, “
Two-sensor power measurements in lossy ducts
,”
J. Acoust. Soc. Am.
91
,
2229
2235
(
1992
).
37.
Ref. 19, Eq. (4.72).
38.
A good overview of this large body of work can be found in proceedings of the annual Intersociety Energy Conversion Engineering Conferences and the less frequent International Stirling Engine Conferences.
39.
R.
Radebaugh
, “
A review of pulse tube refrigeration
,”
Adv. Cryog. Eng.
35
,
1191
1205
(
1990
).
40.
G. W. Swift, M. S. Allen, and J. J. Wollan, “Performance of a tapered pulse tube,” in Cryocoolers 10, edited by R. G. Ross, Jr. (Plenum, New York, 1999).
41.
A. Bejan, Advanced Engineering Thermodynamics, 2nd ed. (Wiley, New York, 1997).
42.
Ref. 19, Eq. (6.21).
43.
R. C.
Tolman
and
P. C.
Fine
, “
On the irreversible production of entropy
,”
Rev. Mod. Phys.
20
,
51
77
(
1948
).
This content is only available via PDF.
You do not currently have access to this content.