A ray model is developed and validated for the prediction of the insertion loss of barriers that are placed in front of a tall building in high-rise cities. The model is based on the theory of geometrical acoustics for sound diffraction at the edge of a barrier and multiple reflections by the barrier and façade surfaces. It is crucial to include the diffraction and multiple reflection effects in the ray model, as they play important roles in determining the overall sound pressure levels for receivers located between the façade and barrier. Comparisons of the ray model with indoor experimental data and wave-based boundary element formulation show reasonably good agreement over a broad frequency range. Case studies are also presented that highlight the significance of positioning the barrier relative to the noise-sensitive receivers in order to achieve improved shielding efficiency of the barrier.

1.
R. H.
Bolt
and
E. A. G.
Shaw
, “
Initial program of the Co-ordinating Committee on environmental acoustics
,”
J. Acoust. Soc. Am.
50
,
443
445
(
1971
).
2.
W. E. Scholes, “Noise reduction by barriers,” Proceedings of the British Acoustics Society Meeting, Paper 70/67, April 1970.
3.
U. J.
Kurze
and
G. S.
Anderson
, “
Sound attenuation by barriers
,”
Appl. Acoust.
4
,
35
53
(
1971
).
4.
Z. Maekawa, K. Fujiwara, and M. Morimoto, “Some problems of noise reduction by barriers,” Symposium On Noise Prevention, Miskolc, Paper No. 4.8, 1971.
5.
U. J.
Kurze
, “
Noise reduction by barriers
,”
J. Acoust. Soc. Am.
55
,
504
518
(
1974
).
6.
A. D.
Pierce
, “
Diffraction of sound around corners and over wide barriers
,”
J. Acoust. Soc. Am.
55
,
941
944
(
1974
).
7.
Z.
Mawkawa
, “
Noise reduction by screens
,”
Appl. Acoust.
1
,
157
173
(
1968
).
8.
S.
Hayek
, “
Mathematical modeling of absorbent highway noise barriers
,”
Appl. Acoust.
31
,
77
100
(
1990
).
9.
J. J. Bowman, T. B. A. Senior, and P. L. E. Uslenghi, Electromagnetic and Acoustic Scattering by Simple Shapes (North-Holland, Amsterdam, 1969).
10.
J.
Nicolas
,
T. F. W.
Embleton
, and
J. E.
Piercy
, “
Precise model measurements versus theoretical prediction of barrier insertion loss in the present of the ground
,”
J. Acoust. Soc. Am.
73
,
44
54
(
1983
).
11.
A.
L’Espérance
,
J.
Nicolas
, and
G. A.
Daigle
, “
Insertion loss of absorbent barriers on ground
,”
J. Acoust. Soc. Am.
86
,
1060
1064
(
1989
).
12.
E. M.
Salomons
,
A. C.
Geerlings
, and
D.
Duhamel
, “
Comparison of a ray model and a Fourier-Boundary Element Method for traffic noise situations with multiple diffractions and reflections
,”
Acustica
83
,
35
47
(
1997
).
13.
Department of Transport and Welsh Office, Calculation of Road Traffic Noise, HMSO, 1988.
14.
T. M. Barry and J. A. Reagan, FHWA Highway Traffic Noise Prediction Model, U.S. Federal Highway Administration, Report FHWA-RD-7-108, Washington, DC, 1978.
15.
Y.
Sakurai
,
E.
Walerian
, and
H.
Morimoto
, “
Noise barrier for a building façade
,”
J. Acoust. Soc. Jpn. (E)
11
,
257
265
(
1990
).
16.
E.
Walerian
,
R.
Janczur
, and
M.
Czechowicz
, “
Sound levels forecasting for city-centers. Part I: Sound level due to a road within an urban canyon
,”
Appl. Acoust.
62
,
359
380
(
2001
).
17.
W. F.
Cheng
and
C. F.
Ng
, “
The acoustic performance of an inclined barrier for high-rise residents
,”
J. Sound Vib.
242
,
295
308
(
2001
).
18.
L.
Godinho
,
J.
Antonio
, and
A.
Tadeu
, “
3D sound scattering by rigid barriers in the vicinity of tall buildings
,”
Appl. Acoust.
62
,
1229
1248
(
2001
).
19.
L. L. Beranek and I. L. Ver, Noise and Vibration Control Engineering (Wiley Interscience, New York, 1992).
20.
R.
Panneton
,
A.
L’Espérance
, and
G. A.
Daigle
, “
Development and vali-dation of a model predicting the performance of hard or absorbent parallel noise barriers
,”
J. Acoust. Soc. Jpn. (E)
14
,
251
258
(
1993
).
21.
W. J.
Hadden
and
A. D.
Pierce
, “
Diffraction of sound around corners and over wide barriers
,”
J. Acoust. Soc. Am.
69
,
1266
1276
(
1981
).
22.
M. Abramowitz and A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (Dover, New York, 1970), Chap. 7, p. 300.
23.
K.
Attenborough
, “
Review of ground effects on outdoor sound propagation from continuous broadband sources
,”
Appl. Acoust.
24
,
289
319
(
1988
).
24.
G. R.
Watt
,
S. N.
Chandler-Wilde
, and
P. A.
Morgan
, “
The combined effects of porous asphalt surfacing and barriers on traffic noise
,”
Appl. Acoust.
58
,
351
377
(
1999
).
25.
S.
Marburg
, “
Six boundary elements per wavelength: Is that enough?
J. Comput. Acoust.
10
,
25
51
(
2002
).
26.
D.
Ouis
, “
Noise shielding by simple barriers: Comparison between the performance of spherical and line sound sources
,”
J. Comput. Acoust.
8
,
25
51
(
2000
).
27.
D. C.
Hothersall
,
S. N.
Chandler-Wilde
, and
N. M.
Hajmirzae
, “
Efficiency of single noise barriers
,”
J. Sound Vib.
146
,
303
321
(
1991
).
28.
G. R.
Watt
,
D. H.
Crombie
, and
D. C.
Hothersall
, “
Acoustic performance of new designs of traffic noise barriers: full scale tests
,”
J. Sound Vib.
177
,
289
305
(
1994
).
29.
D. D.
Rife
and
J.
Vanderkooy
, “
Transfer-function measurement with maximum length sequences
,”
J. Audio Eng. Soc.
37
,
419
444
(
1989
).
30.
S. H.
Tang
and
K. M.
Li
, “
The prediction of façade effects from a point source above an impedance ground
,”
J. Acoust. Soc. Am.
110
,
278
288
(
2001
).
31.
K.
Attenborough
, “
Ground parameter information for propagation modelling
,”
J. Acoust. Soc. Am.
92
,
418
427
(
1992
).
32.
T. A.
Busch
and
M. R.
Hodgson
, “
Improved method for selecting scale factors and model materials for scale modeling of outdoor sound propagation
,”
J. Sound Vib.
243
,
173
181
(
2001
).
This content is only available via PDF.
You do not currently have access to this content.