From the measurement of a low frequency (50–150 Hz) shear wave speed, transient elastography evaluates the Young’s modulus in isotropic soft tissues. In this paper, it is shown that a rod source can generate a low frequency polarized shear strain waves. Consequently this technique allows to study anisotropic medium such as muscle. The evidence of the polarization of low frequency shear strain waves is supported by both numeric simulations and experiments. The numeric simulations are based on theoretical Green’s functions in isotropic and anisotropic media (hexagonal system). The experiments in vitro led on beef muscle proves the pertinent of this simple anisotropic pattern. Results in vivo on man biceps shows the existence of slow and fast shear waves as predicted by theory.

1.
S.
Crampin
and
S. C.
Kirkwood
, “
Shear-wave singularities of wave propagation in anisotropic media
,”
J. Geophys.
49
,
43
46
(
1981
).
2.
T.
Mensch
and
P.
Rasolofosaon
, “
Elastic-wave velocities in anisotropic media of arbitrary symmetry-generalization of Thomsen’s parameters ε, δ and γ
,”
Geophys. J. Int.
128
,
43
64
(
1997
).
3.
J. E.
Zimmer
and
J. R.
Cost
, “
Determination of the elastic constants of an unidirectional fiber composite using ultrasonic velocity measurements
,”
J. Acoust. Soc. Am.
47
,
795
803
(
1970
).
4.
T.
Lhermitte
and
B.
Perrin
, “
Anisotropy of elastic properties of cross-ply fiber-reinforced composite materials
,”
IEEE Ultrasonic Symposium Proc.
2
,
825
830
(
1991
).
5.
B. K.
Hoffmeister
,
S. M.
Handley
,
S. A.
Wickline
, and
J. G.
Miller
, “
Ultrasonic determination of the anisotropy of Young’s modulus of fixed tendon and fixed myocardium
,”
J. Acoust. Soc. Am.
100
,
3933
3940
(
1996
).
6.
P. L.
Kuo
,
P. C.
Li
, and
M. L.
Li
, “
Elastic properties of tendon measured by two different approaches
,”
Ultrasound Med. Biol.
27
,
1275
1284
(
2001
).
7.
H. S.
Yoon
and
J. L.
Katz
, “
Ultrasonic wave propagation in human cortical bone-I. Theoretical considerations for hexagonal symmetry
,”
J. Biomech.
9
,
407
412
(
1976
).
8.
S. F.
Levinson
, “
Ultrasound propagation in anisotropic soft tissues: The application of linear elastic theory
,”
J. Biomech.
20
,
251
260
(
1987
).
9.
J. Anderson, “Elasticité musculaire longitudinale et transversale: influence de l’abscence de desmine—Longitudinal and transversal elasticity of muscles: influence of desmin lack,” thesis (in French), Compiègne University of Technology, France, 2000.
10.
S. F.
Levinson
,
M.
Shinagawa
, and
T.
Sato
, “
Sonoelastic determination of human skeletal muscle elasticity
,”
J. Biomech.
28
,
1145
1154
(
1995
).
11.
F.
Lee
,
J. P.
Bronson
,
R. M.
Lerner
,
K. J.
Parker
,
S. R.
Huang
, and
D. J.
Roach
, “
Sonoelasticity imaging: Results in in vitro tissue specimens
,”
Radiology
181
,
237
(
1991
).
12.
S.
Catheline
,
F.
Wu
, and
M.
Fink
, “
A solution to diffraction biases in sonoelasticity: The acoustic impulse technique
,”
J. Acoust. Soc. Am.
105
,
2941
2950
(
1999
).
13.
L.
Sandrin
,
M.
Tanter
,
J. L.
Gennisson
,
S.
Catheline
, and
M.
Fink
, “
Shear elasticity probe for soft tissue with 1D transient elastography
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
49
,
436
446
(
2002
).
14.
D. C.
Gakenheimer
and
J.
Miklowitz
, “
Transient excitation of an half space by a point load traveling on the surface
,”
J. Appl. Mech.
36
,
505
514
(
1969
).
15.
V.
Vavryčuk
, “
Exact elastodynamic Green’s functions for simple types of anisotropy derived from higher-order ray theory
,”
Stud. Geophys. Geod.
45
,
67
84
(
2001
).
16.
L. Sandrin, “Elastographie impulsionnelle par ultrasons: du palpeur acoustique à l’imagerie ultrarapide—Ultrasound based transient elastography: from the shear elasticity probe to the ultrafast imaging,” thesis (in French), Paris VI University, France, 2000.
17.
J.
Lepetit
, “
Deformation of collagenous, elastin and muscle fibres in raw meat in relation to anisotropy and length ratio
,”
Meat Sci.
26
,
47
66
(
1989
).
This content is only available via PDF.
You do not currently have access to this content.