Three experiments investigated the relationship between harmonic number, harmonic resolvability, and the perception of harmonic complexes. Complexes with successive equal-amplitude sine- or random-phase harmonic components of a 100- or 200-Hz fundamental frequency (f0) were presented dichotically, with even and odd components to opposite ears, or diotically, with all harmonics presented to both ears. Experiment 1 measured performance in discriminating a 3.5%–5% frequency difference between a component of a harmonic complex and a pure tone in isolation. Listeners achieved at least 75% correct for approximately the first 10 and 20 individual harmonics in the diotic and dichotic conditions, respectively, verifying that only processes before the binaural combination of information limit frequency selectivity. Experiment 2 measured fundamental frequency difference limens (f0DLs) as a function of the average lowest harmonic number. Similar results at both f0s provide further evidence that harmonic number, not absolute frequency, underlies the order-of-magnitude increase observed in f0DLs when only harmonics above about the 10th are presented. Similar results under diotic and dichotic conditions indicate that the auditory system, in performing f0 discrimination, is unable to utilize the additional peripherally resolved harmonics in the dichotic case. In experiment 3, dichotic complexes containing harmonics below the 12th, or only above the 15th, elicited pitches of the f0 and twice the f0, respectively. Together, experiments 2 and 3 suggest that harmonic number, regardless of peripheral resolvability, governs the transition between two different pitch percepts, one based on the frequencies of individual resolved harmonics and the other based on the periodicity of the temporal envelope.

1.
Alcántara
,
J. I.
, and
Moore
,
B. C. J.
(
1995
). “
The identification of vowel-like harmonic complexes: Effects of component phase, level, and fundamental frequency
,”
J. Acoust. Soc. Am.
97
,
3813
3824
.
2.
Arehart
,
K. H.
, and
Burns
,
E. M.
(
1999
). “
A comparison of monotic and dichotic complex-tone pitch perception in listeners with hearing loss
,”
J. Acoust. Soc. Am.
106
,
993
997
.
3.
Cariani
,
P. A.
, and
Delgutte
,
B.
(
1996
). “
Neural correlates of the pitch of complex tones. I. Pitch and pitch salience
,”
J. Neurophysiol.
76
,
1698
1716
.
4.
Carlyon
,
R. P.
(
1998
). “
Comments on ‘A unitary model of pitch perception [J. Acoust. Soc. Am. 102, 1811–1820 (1997)],’ 
J. Acoust. Soc. Am.
104
,
1118
1121
.
5.
Carlyon
,
R. P.
, and
Shackleton
,
T. M.
(
1994
). “
Comparing the fundamental frequencies of resolved and unresolved harmonics: Evidence for two pitch mechanisms?
J. Acoust. Soc. Am.
95
,
3541
3554
.
6.
Cullen
,
J. K.
, and
Long
,
G. R.
(
1986
). “
Rate discrimination of high-pass-filtered pulse trains
,”
J. Acoust. Soc. Am.
79
,
114
119
.
7.
de Cheveigné
,
A.
(
1998
). “
Cancellation model of pitch perception
,”
J. Acoust. Soc. Am.
103
,
1261
1271
.
8.
Duifhuis
,
H.
(
1970
). “
Audibility of high harmonics in a periodic pulse
,”
J. Acoust. Soc. Am.
48
,
888
893
.
9.
Fine
,
P. A.
, and
Moore
,
B. C. J.
(
1993
). “
Frequency analysis and musical ability
,”
Music Percept.
11
,
39
53
.
10.
Flanagan
,
J. L.
, and
Guttman
,
N.
(
1960
). “
On the pitch of periodic pulses
,”
J. Acoust. Soc. Am.
32
,
1308
.
11.
Goldstein
,
J. L.
(
1973
). “
An optimum processor theory for the central formation of the pitch of complex tones
,”
J. Acoust. Soc. Am.
54
,
1496
1516
.
12.
Grimault
,
N.
,
Micheyl
,
C.
,
Carlyon
,
R. P.
, and
Collet
,
L.
(
2002
). “
Evidence for two pitch encoding mechanisms using a selective auditory training paradigm
,”
Percept. Psychophys.
64
,
189
197
.
13.
Hall
,
J. W.
, and
Soderquist
,
D. R.
(
1975
). “
Encoding and pitch strength of complex tones
,”
J. Acoust. Soc. Am.
58
,
1257
1261
.
14.
Hoekstra, A. (1979). “Frequency discrimination and frequency analysis in hearing,” Ph.D. Thesis, Institute of Audiology, University Hospital, Groningen, Netherlands.
15.
Houtsma
,
A. J. M.
, and
Goldstein
,
J. L.
(
1972
). “
The central origin of the pitch of pure tones: Evidence from musical interval recognition
,”
J. Acoust. Soc. Am.
51
,
520
529
.
16.
Houtsma
,
A. J. M.
, and
Smurzynski
,
J.
(
1990
). “
Pitch identification and discrimination for complex tones with many harmonics
,”
J. Acoust. Soc. Am.
87
,
304
310
.
17.
Kaernbach
,
C.
, and
Bering
,
C.
(
2001
). “
Exploring the temporal mechanism involved in the pitch of unresolved harmonics
,”
J. Acoust. Soc. Am.
110
,
1039
1048
.
18.
Krumbholz
,
K.
,
Patterson
,
R. D.
, and
Pressnitzer
,
D.
(
2000
). “
The lower limit of pitch as determined by rate discrimination
,”
J. Acoust. Soc. Am.
108
,
1170
1180
.
19.
Levitt
,
H.
(
1971
). “
Transformed up-down methods in psychoacoustics
,”
J. Acoust. Soc. Am.
49
,
467
477
.
20.
Licklider
,
J. C. R.
(
1951
). “
A duplex theory of pitch perception
,”
Experientia
7
,
128
133
.
21.
Licklider, J. C. R. (1959). “Three auditory theories,” in Psychology, a Study of Science, edited by S. Koch (McGraw–Hill, New York).
22.
Meddis
,
R.
, and
Hewitt
,
M.
(
1991a
). “
Virtual pitch and phase sensitivity studied of a computer model of the auditory periphery. I: Pitch identification
,”
J. Acoust. Soc. Am.
89
,
2866
2882
.
23.
Meddis
,
R.
, and
Hewitt
,
M.
(
1991b
). “
Virtual pitch and phase sensitivity studied of a computer model of the auditory periphery. II: Phase sensitivity
,”
J. Acoust. Soc. Am.
89
,
2883
2894
.
24.
Meddis
,
R.
, and
O’Mard
,
L.
(
1997
). “
A unitary model of pitch perception
,”
J. Acoust. Soc. Am.
102
,
1811
1820
.
25.
Moore
,
B. C. J.
(
1973
). “
Frequency difference limens for short-duration tones
,”
J. Acoust. Soc. Am.
54
,
610
619
.
26.
Moore, B. C. J. (1982). An Introduction to the Psychology of Hearing, 2nd ed. (Academic, London), pp. 140–144.
27.
Moore
,
B. C. J.
, and
Ohgushi
,
K.
(
1993
). “
Audibility of partials in inharmonic complex tones
,”
J. Acoust. Soc. Am.
93
,
452
461
.
28.
Ohm
,
G. S.
(
1843
). “
Über die Definition des Tones, nebst daran geknüpfter Theorie der Sirene und ähnlicher tonbildender Vorrichtungen [On the definition of the tone and the related theory of the siren and similar tone-producing devices]
,”
Ann. Phys. Chem.
59
,
513
565
.
29.
Palmer
,
A. R.
,
Summerfield
,
Q.
, and
Fantini
,
D. A.
(
1995
). “
Responses of auditory-nerve fibers to stimuli producing psychophysical enhancement
,”
J. Acoust. Soc. Am.
97
,
1786
1799
.
30.
Plomp
,
R.
(
1964
). “
The ear as a frequency analyzer
,”
J. Acoust. Soc. Am.
36
,
1628
1636
.
31.
Plomp
,
R.
(
1967
). “
Pitch of complex tones
,”
J. Acoust. Soc. Am.
41
,
1526
1533
.
32.
Plomp
,
R.
, and
Mimpen
,
A. M.
(
1968
). “
The ear as a frequency analyzer II
,”
J. Acoust. Soc. Am.
43
,
764
767
.
33.
Pressnitzer
,
D.
,
Patterson
,
R. D.
, and
Krumbholz
,
K.
(
2001
). “
The lower limit of melodic pitch
,”
J. Acoust. Soc. Am.
109
,
2074
2084
.
34.
Ritsma
,
R. J.
(
1962
). “
Existence region of the tonal residue. I.
,”
J. Acoust. Soc. Am.
34
,
1224
1229
.
35.
Ritsma
,
R. J.
(
1967
). “
Frequencies dominant in the perception of the pitch of complex sounds
,”
J. Acoust. Soc. Am.
42
,
191
198
.
36.
Schmidt
,
S.
, and
Zwicker
,
E.
(
1991
). “
The effect of masker spectral asymmetry on overshoot in simultaneous masking
,”
J. Acoust. Soc. Am.
89
,
1324
1330
.
37.
Scutt, M. J., Palmer, A. R., and Summerfield, A. Q. (1997). “Psychophysical and physiological responses to signals which are enhanced by temporal context,” Abstr., Assoc. Res. Otolaryngol. MidWinter Meeting.
38.
Seebeck
,
A.
(
1841
). “
Beobachtungen über einige Bedingungen der Entstehung von Tönen [Observations on some conditions for the creation of tones]
,”
Ann. Phys. Chem.
53
,
417
436
.
39.
Shackleton
,
T. M.
, and
Carlyon
,
R. P.
(
1994
). “
The role of resolved and unresolved harmonics in pitch perception and frequency modulation discrimination
,”
J. Acoust. Soc. Am.
95
,
3529
3540
.
40.
Shamma
,
S.
, and
Klein
,
D.
(
2000
). “
The case of the missing pitch templates: How harmonic templates emerge in the early auditory system
,”
J. Acoust. Soc. Am.
107
,
2631
2644
.
41.
Shera
,
C. A.
,
Guinan
,
J. J.
, and
Oxenham
,
A. J.
(
2002
). “
Revised estimates of human cochlear tuning from otoacoustic and behavioral measurements
,”
Proc. Natl. Acad. Sci. U.S.A.
99
,
3318
3323
.
42.
Soderquist
,
D. R.
(
1970
). “
Frequency analysis and the critical band
,”
Psychonomic Sci.
21
,
117
119
.
43.
Srulovicz
,
P.
, and
Goldstein
,
J. L.
(
1983
). “
A central spectrum model: A synthesis of auditory-nerve timing and place cues in monaural communication of frequency spectrum
,”
J. Acoust. Soc. Am.
73
,
1266
1276
.
44.
Steinschneider
,
M.
,
Reser
,
D. H.
,
Fishman
,
Y. I.
,
Schroeder
,
C. E.
, and
Arezo
,
J. C.
(
1998
). “
Click train encoding in primary auditory cortex of the awake monkey: Evidence for two mechanisms subserving pitch perception
,”
J. Acoust. Soc. Am.
104
,
2935
2955
.
45.
Terhardt
,
E.
(
1974
). “
Pitch, consonance, and harmony
,”
J. Acoust. Soc. Am.
55
,
1061
1069
.
46.
Terhardt
,
E.
(
1979
). “
Calculating virtual pitch
,”
Hear. Res.
1
,
155
182
.
47.
Viemeister
,
N. F.
, and
Bacon
,
S. P.
(
1982
). “
Forward masking by enhanced components in harmonic complexes
,”
J. Acoust. Soc. Am.
71
,
1502
1507
.
48.
Weiss
,
T. F.
, and
Rose
,
C.
(
1988
). “
Stages of degradation of timing information in the cochlea—a comparison of hair-cell and nerve fiber responses in the alligator lizard
,”
Hear. Res.
33
,
167
174
.
49.
Wightman
,
F. L.
(
1973
). “
The pattern-transformation model of pitch
,”
J. Acoust. Soc. Am.
54
,
407
416
.
50.
Zurek
,
P. M.
(
1979
). “
Measurements of binaural echo suppression
,”
J. Acoust. Soc. Am.
66
,
1750
1757
.
This content is only available via PDF.
You do not currently have access to this content.