Lower sideband distortion product otoacoustic emissions (DPOAEs), measured in the ear canal upon stimulation with two continuous pure tones, are the result of interfering contributions from two different mechanisms, the nonlinear distortion component and the linear reflection component. The two contributors have been shown to have a different amplitude and, in particular, a different phase behavior as a function of the stimulus frequencies. The dominance of either component was investigated in an extensive (f1,f2) area study of DPOAE amplitude and phase in the guinea pig, which allows for both qualitative and quantitative analysis of isophase contours. Making a minimum of additional assumptions, simple relations between the direction of constant phase in the (f1,f2) plane and the group delays in f1-sweep, f2-sweep, and fixed f2/f1 paradigms can be derived, both for distortion (wave-fixed) and reflection (place-fixed) components. The experimental data indicate the presence of both components in the lower sideband DPOAEs, with the reflection component as the dominant contributor for low f2/f1 ratios and the distortion component for intermediate ratios. At high ratios the behavior cannot be explained by dominance of either component.

1.
Brown
,
A. M.
, and
Gaskill
,
S. A.
(
1990
). “
Measurement of acoustic distortion reveals underlying similarities between human and rodent mechanical responses
,”
J. Acoust. Soc. Am.
88
,
840
849
.
2.
Brown
,
A. M.
,
Harris
,
F. P.
, and
Beveridge
,
H. A.
(
1996
). “
Two sources of acoustic distortion products from the human cochlea
,”
J. Acoust. Soc. Am.
100
,
3260
3267
.
3.
Fahey
,
P. F.
, and
Allen
,
J. B.
(
1997
). “
Measurement of distortion product phase in the ear canal of the cat
,”
J. Acoust. Soc. Am.
102
,
2880
2891
.
4.
Heitmann
,
J.
,
Waldmann
,
B.
,
Schnitzler
,
H.-U.
,
Plinkert
,
P. K.
, and
Zenner
,
H.-P.
(
1998
). “
Suppression of distortion product otoacoustic emissions (DPOAE) near 2f1−f2 removes DP-gram fine structure—Evidence for a secondary generator
,”
J. Acoust. Soc. Am.
103
,
1527
1531
.
5.
Kalluri
,
R.
, and
Shera
,
C. A.
(
2001
). “
Distortion-product source unmixing: A test of the two-mechanism model for DPOAE generation
,”
J. Acoust. Soc. Am.
109
,
622
637
.
6.
Kemp
,
D. T.
(
1979
). “
Evidence of mechanical nonlinearity and frequency selective wave amplification in the cochlea
,”
Arch. Oto-Rhino-Laryngol.
224
,
37
45
.
7.
Kemp
,
D. T.
(
1986
). “
Otoacoustic emissions, travelling waves and cochlear mechanisms
,”
Hear. Res.
22
,
95
104
.
8.
Kim
,
D. O.
(
1980
). “
Cochlear mechanics: implications of electrophysiological and acoustical observations
,”
Hear. Res.
2
,
297
317
.
9.
Kimberley
,
B. P.
,
Brown
,
D. K.
, and
Eggermont
,
J. J.
(
1993
). “
Measuring human cochlear traveling wave delay using distortion product otoacoustic emission phase responses
,”
J. Acoust. Soc. Am.
94
,
1343
1350
.
10.
Knight
,
R. D.
, and
Kemp
,
D. T.
(
1999
). “
Relationships between DPOAE and TEOAE amplitude and phase characteristics
,”
J. Acoust. Soc. Am.
106
,
1420
1435
.
11.
Knight
,
R. D.
, and
Kemp
,
D. T.
(
2000
). “
Indications of different distortion product otoacoustic emission mechanisms from a detailed f1,f2 area study
,”
J. Acoust. Soc. Am.
107
,
457
473
.
12.
Knight
,
R. D.
, and
Kemp
,
D. T.
(
2001
). “
Wave and place fixed DPOAE maps of the human ear
,”
J. Acoust. Soc. Am.
109
,
1513
1525
.
13.
Kummer
,
P.
,
Janssen
,
T.
, and
Arnold
,
W.
(
1995
). “
Suppression tuning characteristics of the 2f1−f2 distortion product otoacoustic emission in humans
,”
J. Acoust. Soc. Am.
98
,
197
210
.
14.
Kummer
,
P.
,
Janssen
,
T.
,
Hulin
,
P.
, and
Arnold
,
W.
(
2000
). “
Optimal L1−L2 primary tone level separation remains independent of test frequency in humans
,”
Hear. Res.
146
,
47
56
.
15.
Martin
,
G. K.
,
Jassir
,
D.
,
Stagner
,
B. B.
,
Whitehead
,
M. L.
, and
Lonsbury-Martin
,
B. L.
(
1998
). “
Locus of generation for the 2f1−f2 vs 2f2−f1 distortion-product otoacoustic emissions in normal-hearing humans revealed by suppression tuning, onset latencies, and amplitude correlations
,”
J. Acoust. Soc. Am.
103
,
1957
1971
.
16.
Martin
,
G. K.
,
Lonsbury-Martin
,
B. L.
,
Probst
,
R.
,
Scheinin
,
S. A.
, and
Coats
,
A. C.
(
1987
). “
Acoustic distortion products in rabbit ear canal. II. Sites of origin revealed by suppression contours and pure-tone exposures
,”
Hear. Res.
28
,
191
208
.
17.
Mauermann
,
M.
,
Uppenkamp
,
S.
,
van Hengel
,
P. W. J.
, and
Kollmeier
,
B.
(
1999
). “
Evidence for the distortion product frequency place as a source of distortion product otoacoustic emission (DPOAE) fine structure in humans. I. Fine structure and higher-order DPOAE as a function of the frequency ratio f2/f1,
J. Acoust. Soc. Am.
106
,
3473
3483
.
18.
Moulin
,
A.
, and
Kemp
,
D. T.
(
1996
). “
Multicomponent acoustic distortion product otoacoustic emission phase in humans. II. Implications for distortion product otoacoustic emissions generation
,”
J. Acoust. Soc. Am.
100
,
1640
1662
.
19.
O’Mahoney
,
C. F.
, and
Kemp
,
D. T.
(
1995
). “
Distortion product otoacoustic emission delay measurement in human ears
,”
J. Acoust. Soc. Am.
97
,
3721
3735
.
20.
Prijs
,
V. F.
,
Schneider
,
S.
, and
Schoonhoven
,
R.
(
2000
). “
Group delays of distortion product otoacoustic emissions: Relating delays measured with f1- and f2-sweep paradigms
,”
J. Acoust. Soc. Am.
107
,
3298
3307
.
21.
Schneider
,
S.
,
Prijs
,
V. F.
, and
Schoonhoven
,
R.
(
1999
). “
Group delays of distortion product otoacoustic emissions in the guinea pig
,”
J. Acoust. Soc. Am.
105
,
2722
2730
.
22.
Schneider, S., Prijs, V. F., Schoonhoven, R., and van Hengel, P. W. J. (2000). “f1- versus f2-sweep group delays of distortion product otoacoustic emissions in the guinea pig; experimental results and theoretical predictions,” in Recent Developments in Auditory Mechanics, edited by H. Wada, T. Takasaka, K. Ikeda, K. Ohyama, and T. Koike (World Scientific, Singapore), pp. 360–366.
23.
Schneider
,
S.
,
Schoonhoven
,
R.
, and
Prijs
,
V. F.
(
2001
). “
Amplitude of distortion product otoacoustic emissions in the guinea pig in f1- and f2-sweep paradigms
,”
Hear. Res.
155
,
21
31
.
24.
Schoonhoven
,
R.
,
Prijs
,
V. F.
, and
Schneider
,
S.
(
2001
). “
DPOAE group delays versus electrophysiological measures of cochlear delay in normal human ears
,”
J. Acoust. Soc. Am.
109
,
1503
1512
.
25.
Shera
,
C. A.
, and
Guinan
,
J. J.
(
1999
). “
Evoked otoacoustic emissions arise by two fundamentally different mechanisms: A taxonomy for mammalian OAEs
,”
J. Acoust. Soc. Am.
105
,
782
798
.
26.
Shera
,
C. A.
,
Talmadge
,
C. L.
, and
Tubis
,
A.
(
2000
). “
Interrelations among distortion-product phase-gradient delays: Their connection to scaling symmetry and its breaking
,”
J. Acoust. Soc. Am.
108
,
2933
2948
.
27.
Talmadge
,
C. L.
,
Long
,
G. R.
,
Tubis
,
A.
, and
Dhar
,
S.
(
1999
). “
Experimental confirmation of the two-source interference model for the fine structure of distortion product otoacoustic emissions
,”
J. Acoust. Soc. Am.
105
,
275
292
.
28.
Talmadge
,
C. L.
,
Tubis
,
A.
,
Long
,
G. R.
, and
Piskorski
,
P.
(
1998
). “
Modeling otoacoustic emission and hearing threshold fine structure
,”
J. Acoust. Soc. Am.
104
,
1517
1543
.
29.
Talmadge, C. L., Tubis, A., Tong, C., Long, G. R., and Dhar, S. (2000). “Temporal aspects of otoacoustic emissions,” in Recent Developments in Auditory Mechanics, edited by H. Wada, T. Takasaka, K. Ikeda, K. Ohyama, and T. Koike (World Scientific, Singapore), pp. 353–359.
30.
Tubis
,
A.
,
Talmadge
,
C. L.
,
Tong
,
C.
, and
Dhar
,
S.
(
2000
). “
On the relationships between the fixed- f1, fixed-f2, and fixed-ratio phase derivatives of the 2f1−f2 distortion product otoacoustic emission
,”
J. Acoust. Soc. Am.
108
,
1772
1785
.
This content is only available via PDF.
You do not currently have access to this content.