Recently, Boege and Janssen [J. Acoust. Soc. Am. 111, 1810–1818 (2002)] fit linear equations to distortion product otoacoustic emission (DPOAE) input/output (I/O) functions after the DPOAE level (in dB SPL) was converted into pressure (in μPa). Significant correlations were observed between these DPOAE thresholds and audiometric thresholds. The present study extends their work by (1) evaluating the effect of frequency, (2) determining the behavioral thresholds in those conditions that did not meet inclusion criteria, and (3) including a wider range of stimulus levels. DPOAE I/O functions were measured in as many as 278 ears of subjects with normal and impaired hearing. Nine f2 frequencies (500 to 8000 Hz in 12-octave steps) were used, L2 ranged from 10 to 85 dB SPL (5-dB steps), and L1 was set according to the equation L1=0.4L2+39 dB [Kummer et al., J. Acoust. Soc. Am. 103, 3431–3444 (1998)] for L2 levels up to 65 dB SPL, beyond which L1=L2. For the same conditions as those used by Boege and Janssen, we observed a frequency effect such that correlations were higher for mid-frequency threshold comparisons. In addition, a larger proportion of conditions not meeting inclusion criteria at mid and high frequencies had hearing losses exceeding 30 dB HL, compared to lower frequencies. These results suggest that DPOAE I/O functions can be used to predict audiometric thresholds with greater accuracy at mid and high frequencies, but only when certain inclusion criteria are met. When the SNR inclusion criterion is not met, the expected amount of hearing loss increases. Increasing the range of input levels from 20–65 dB SPL to 10–85 dB SPL increased the number of functions meeting inclusion criteria and increased the overall correlation between DPOAE and behavioral thresholds.

1.
Allen, J. B., and Levitt, H. (1992). “A comparison of pure tone audiometric and distortion product otoacoustic emission thresholds,” unpublished manuscript.
2.
ANSI(1996). ANSI S3.6, “Specifications for Audiometers” (American Institute of Physics, New York).
3.
Boege, P. (2002). Personal communication.
4.
Boege
,
P.
, and
Janssen
,
T.
(
2002
). “
Pure-tone threshold estimation from extrapolated distortion product otoacoustic emission I/O functions in normal and cochlear hearing loss ears
,”
J. Acoust. Soc. Am.
111
,
1810
1818
.
5.
Brownell
,
W. E.
(
1990
). “
Outer hair cell electromotility and otoacoustic emissions
,”
Ear Hear.
11
,
82
92
.
6.
Dallos, P. J., Harris, D. M., Relkin, E., and Cheatham, M. A. (1980). “Two-tone suppression and intermodulation distortion in the cochlea: Effect of outer hair cell lesions,” in Psychophysical, Physiological and Behavioral Studies of Hearing, edited by G. van den Brink and F. A. Bilsen (Delft U. P., Delft, The Netherlands), pp. 242–252.
7.
Dorn
,
P. A.
,
Piskorski
,
P.
,
Gorga
,
M. P.
,
Neely
,
S. T.
, and
Keefe
,
D. H.
(
1999
). “
Predicting audiometric status from distortion product otoacoustic emissions using multivariate analyses
,”
Ear Hear.
20
,
149
163
.
8.
Dorn
,
P. A.
,
Piskorski
,
P.
,
Keefe
,
D. H.
,
Neely
,
S. T.
, and
Gorga
,
M. P.
(
1998
). “
On the existence of an age/threshold/frequency interaction in distortion product otoacoustic emissions
,”
J. Acoust. Soc. Am.
104
,
964
971
.
9.
Dorn
,
P. A.
,
Konrad-Martin
,
D.
,
Neely
,
S. T.
,
Keefe
,
D. H.
,
Cyr
,
E.
, and
Gorga
,
M. P.
(
2001
). “
Distortion product otoacoustic emission input/output functions in normal-hearing and hearing-impaired human ears
,”
J. Acoust. Soc. Am.
110
,
3119
3131
.
10.
Gorga
,
M. P.
,
Neely
,
S. T.
, and
Dorn
,
P. A.
(
1999
). “
DPOAE test performance for a priori criteria and for multifrequency audiometric standards
,”
Ear Hear.
20
,
345
362
.
11.
Gorga, M. P., Neely, S. T., and Dorn, P. A. (2002). “Distortion product otoacoustic emissions in relation to hearing loss,” in Otoaccoustic Emissions: Clinical Applications, 2nd ed., edited by M. S. Robinette and T. J. Glattke (Thieme Medical, New York), pp. 243–272.
12.
Gorga
,
M. P.
,
Stover
,
L. J.
, and
Neely
,
S. T.
(
1996
). “
The use of cumulative distributions to determine critical values and levels of confidence for clinical distortion product otoacoustic emission measurements
,”
J. Acoust. Soc. Am.
100
,
968
977
.
13.
Gorga
,
M. P.
,
Nelson
,
K.
,
Davis
,
T.
,
Dorn
,
P. A.
, and
Neely
,
S. T.
(
2000
). “
Distortion product otoacoustic emission test performance when both 2f1-f2 and 2f2-f1 are used to predict auditory status
,”
J. Acoust. Soc. Am.
107
,
2128
2135
.
14.
Gorga
,
M. P.
,
Neely
,
S. T.
,
Ohlrich
,
B.
,
Hoover
,
B.
,
Redner
,
J.
, and
Peters
,
J.
(
1997
). “
From laboratory to clinic: A large scale study of distortion product otoacoustic emissions in ears with normal hearing and ears with hearing loss
,”
Ear Hear.
18
,
440
455
.
15.
Gorga
,
M. P.
,
Neely
,
S. T.
,
Bergman
,
B. M.
,
Beauchaine
,
K. L.
,
Kaminski
,
J. R.
,
Peters
,
J.
, and
Jesteadt
,
W.
(
1993
). “
Otoacoustic emissions from normal-hearing and hearing-impaired subjects: Distortion product responses
,”
J. Acoust. Soc. Am.
93
,
2050
2060
.
16.
Janssen
,
T.
,
Kummer
,
P.
, and
Arnold
,
W.
(
1998
). “
Growth behavior of the 2f1-f1 distortion product otoacoustic emission in tinnitus
,”
J. Acoust. Soc. Am.
94
,
2659
2669
.
17.
Kim
,
D. O.
,
Paparello
,
J.
,
Jung
,
M. D.
,
Smursynski
,
J.
, and
Sun
,
X.
(
1996
). “
Distortion product otoacoustic emission test of sensorineural hearing loss: Performance regarding sensitivity, specificity, and receiver operating characteristics
,”
Acta Octolaryngol. (Stokh.)
116
,
3
11
.
18.
Kimberley
,
B. P.
,
Hernadi
,
I.
,
Lee
,
A. M.
, and
Brown
,
D. K.
(
1994
). “
Predicting pure-tone thresholds in normal and hearing-impaired ears with distortion product emission and age
,”
Ear Hear.
15
,
199
209
.
19.
Kimberley, B. P., Brown, D. K., and Allen, J. B. (1997). “Distortion product emissions and sensorineural hearing loss,” in Otoacoustic Emissions: Clinical Applications, edited by M. S. Robinette and T. J. Glattke (Thieme Medical, New York), pp. 181–204.
20.
Kummer
,
P.
,
Janssen
,
T.
, and
Arnold
,
W.
(
1998
). “
The level and growth behavior of the 2f1-f2 distortion product otoacoustic emission and its relationship to auditory sensitivity in normal hearing and cochlear hearing loss
,”
J. Acoust. Soc. Am.
103
,
3431
3444
.
21.
Martin
,
G. K.
,
Ohlms
,
L. A.
,
Franklin
,
D. J.
,
Harris
,
F. P.
, and
Lonsbury-Martin
,
B. L.
(
1990
). “
Distortion product emission in humans. III. Influence of sensorineural hearing loss
,”
Ann. Otol. Rhinol. Laryngol. Suppl.
147
,
30
42
.
22.
Neely
,
S. T.
, and
Gorga
,
M. P.
(
1998
). “
Comparison between intensity and pressure as measures of stimulus level in the ear canal
,”
J. Acoust. Soc. Am.
104
,
2925
2934
.
23.
Neely, S. T., and Liu, Z. (1994). “EMAV: Otoacoustic emission averager,” Tech. Memo No. 17 (Boys Town National Research Hospital, Omaha, NE).
24.
Oswald, J. A., Muller, J., and Janssen, T. (2002). “Audiometric threshold estimation in cochlear hearing loss ears by means of weighted extrapolated DPOAE I/O functions,” presented at the Twenty-Fifth Annual Midwinter Research Meeting of the Association for Research in Otolaryngology, St. Petersburg Beach, FL.
25.
Ruggero
,
M. A.
,
Rich
,
N. C.
,
Recio
,
A.
,
Narayan
,
S. S.
, and
Robles
,
L.
(
1997
). “
Basilar-membrane responses to tones at the base of the chinchilla cochlea
,”
J. Acoust. Soc. Am.
101
,
2151
2163
.
26.
Siegel
,
J. H.
(
1994
). “
Ear-canal standing waves and high-frequency sound calibration using otoacoustic emission probes
,”
J. Acoust. Soc. Am.
95
,
2589
2597
.
27.
Siegel, J. H. (2002). “Calibrating Otoacoustic Emission Probes,” in Otoaccoustic Emissions: Clinical Applications, 2nd ed., edited by M. S. Robinette and T. J. Glattke (Thieme Medical, New York), pp. 416–441.
28.
Stover
,
L.
,
Gorga
,
M. P.
,
Neely
,
S. T.
, and
Montoya
,
D.
(
1996
). “
Towards optimizing the clinical utility of distortion product otoacoustic emission measurements
,”
J. Acoust. Soc. Am.
100
,
956
967
.
This content is only available via PDF.
You do not currently have access to this content.