The aim of this study is to produce a functional model of the auditory nerve (AN) response of the guinea-pig that reproduces a wide range of important responses to auditory stimulation. The model is intended for use as an input to larger scale models of auditory processing in the brain-stem. A dual-resonance nonlinear filter architecture is used to reproduce the mechanical tuning of the cochlea. Transduction to the activity on the AN is accomplished with a recently proposed model of the inner-hair-cell. Together, these models have been shown to be able to reproduce the response of high-, medium-, and low-spontaneous rate fibers from the guinea-pig AN at high best frequencies (BFs). In this study we generate parameters that allow us to fit the AN model to data from a wide range of BFs. By varying the characteristics of the mechanical filtering as a function of the BF it was possible to reproduce the BF dependence of frequency-threshold tuning curves, AN rate-intensity functions at and away from BF, compression of the basilar membrane at BF as inferred from AN responses, and AN iso-intensity functions. The model is a convenient computational tool for the simulation of the range of nonlinear tuning and rate-responses found across the length of the guinea-pig cochlear nerve.

1.
Assman
,
P.
, and
Summerfield
,
Q.
(
1990
). “
Modelling the perception of concurrent vowels: Vowels with different fundamental frequencies
,”
J. Acoust. Soc. Am.
85
,
327
338
.
2.
Brandenburg, K. (1996). “Introduction to Perceptual Coding,” in Collected Papers on Digital Audio Bit-Rate Reduction, edited by N. Gilchrist and C. Grewin, Audio Eng. Soc. ISBN 0-937803-33-2.
3.
Brandenburg
,
K.
, and
Bosi
,
M.
(
1997
). “
Overview of MPEG Audio: Current and Future Standards for Low-Bit-Rate Audio Coding
,”
J. Audio Eng. Soc.
45
,
4
21
.
4.
Brown
,
G. J.
, and
Cooke
,
M.
(
1994
). “
Computational auditory scene analysis
,”
Comput. Speech Lang.
8
,
297
336
.
5.
Carney
,
L. H.
(
1993
). “
A model for the responses of low-frequency auditory-nerve fibers in cat
,”
J. Acoust. Soc. Am.
93
,
401
417
.
6.
Carney
,
L. H.
,
McDuffy
,
M. J.
, and
Shekhter
,
I.
(
1999
). “
Frequency glides in the impulse response of auditory nerve-fibers
,”
J. Acoust. Soc. Am.
105
,
2384
2391
.
7.
Cooper
,
N. P.
, and
Rhode
,
W. S.
(
1995
). “
Nonlinear mechanics at the apex of the guinea-pig cochlea
,”
Hear. Res.
82
,
225
243
.
8.
Cooper
,
N. P.
, and
Yates
,
G. K.
(
1994
). “
Non-linear input-output functions derived from the responses of guinea-pig cochlear nerve fibres: Variations with characteristic frequency
,”
Hear. Res.
78
,
221
234
.
9.
Deng
,
L.
, and
Geisler
,
C. D.
(
1987
). “
A composite model for processing speech sounds
,”
J. Acoust. Soc. Am.
82
,
2001
2012
.
10.
Ellis, D. P. W. (1996). “Prediction-driven computational auditory scene analysis,” Ph.D. Thesis, MIT.
11.
Evans
,
E. F.
(
1972
). “
The frequency response and other properties of single fibers in the guinea-pig cochlear nerve
,”
J. Physiol. (London)
226
,
263
287
.
12.
Ghitza
,
O.
(
1988
). “
Temporal non-place information in the auditory-nerve firing patterns as a front-end for speech recognition in a noisy environment
,”
J. Phonetics
16
,
109
123
.
13.
Giguere, C., and Smoorenburg, G. F. (1998). “Computational modeling of outer hair cell damage: implications for hearing and signal processing,” in Psychophysics, Physiology and Models of Hearing (World Scientific, Singapore), pp. 155–164.
14.
Giguere
,
C.
, and
Woodland
,
P. C.
(
1994
). “
A computational model of the auditory periphery for speech and hearing research I. Ascending path
,”
J. Acoust. Soc. Am.
95
,
331
342
.
15.
Goldstein
,
J. L.
(
1990
). “
Modeling rapid waveform compression on the basilar membrane as multiple-bandpass-nonlinearity filtering
,”
Hear. Res.
49
,
39
60
.
16.
Goldstein
,
J. L.
(
1995
). “
Relations amount compression, suppression and combination tones in mechanical responses of the basilar membrane: data and MBPNL model
,”
Hear. Res.
89
,
52
68
.
17.
Hartung
,
K.
, and
Trahiotis
,
C.
(
2001
). “
Peripheral auditory processing and investigations of the “precedence effect” which utilize successive transient stimuli
,”
J. Acoust. Soc. Am.
110
,
1505
1513
.
18.
Hermansky
,
H.
(
1998
). “
Should recognizers have ears?
Speech Commun.
25
,
3
24
.
19.
Hewitt
,
M. J.
, and
Meddis
,
R.
(
1992
). “
Regularity of cochlear nucleus stellate cells: A computational modeling study
,”
J. Acoust. Soc. Am.
93
,
3390
3399
.
20.
Irino
,
T.
, and
Patterson
,
R. D.
(
2001
). “
A compressive gammachirp auditory filter for both physiological and psychological data
,”
J. Acoust. Soc. Am.
109
,
2008
2022
.
21.
Jenison
,
R. L.
,
Greenberg
,
S.
,
Kleunder
,
K. R.
, and
Rhode
,
W. S.
(
1991
). “
A composite model of the auditory periphery for the processing of speech based on the filter functions of single auditory-nerve fibers
,”
J. Acoust. Soc. Am.
90
,
773
785
.
22.
Liberman
,
M. C.
, and
Kiang
,
N. Y. S.
(
1984
). “
Single-neuron labeling and chronic cochlear pathology. IV. Stereocilia damage and alterations in rate- and phase level-functions
,”
Hear. Res.
16
,
75
90
.
23.
Lopez-Poveda
,
E. A.
, and
Meddis
,
R.
(
2001a
). “
A human nonlinear cochlear filterbank
,”
J. Acoust. Soc. Am.
110
,
3107
3118
.
24.
Lopez-Poveda, E. A., and Meddis, R. (2001b). “A human nonlinear cochlear filterbank,” #827, ARO Midwinter research meeting, Florida.
25.
Meddis
,
R.
(
1986
). “
Simulation of mechanical to neural transduction in the auditory receptor
,”
J. Acoust. Soc. Am.
79
,
702
711
.
26.
Meddis
,
R.
(
1988
). “
Simulation of auditory-neural transduction: Further studies
,”
J. Acoust. Soc. Am.
83
,
1056
1063
.
27.
Meddis
,
R.
, and
Hewitt
,
M. J.
(
1991a
). “
Virtual pitch and phase sensitivity of a computer model of the auditory periphery. I. Pitch Identification
,”
J. Acoust. Soc. Am.
89
,
2866
2882
.
28.
Meddis
,
R.
, and
Hewitt
,
M. J.
(
1991b
). “
Virtual pitch and phase sensitivity of a computer model of the auditory periphery. II. Phase sensitivity
,”
J. Acoust. Soc. Am.
89
,
2883
2894
.
29.
Meddis
,
R.
, and
Hewitt
,
M. J.
(
1992
). “
Modeling the identification of concurrent vowels with different fundamental frequencies
,”
J. Acoust. Soc. Am.
91
,
233
245
.
30.
Meddis
,
R.
,
O’Mard
,
L. P.
, and
Lopez-Poveda
,
E. A.
(
2001
). “
A computational algorithm for computing nonlinear auditory frequency selectivity
,”
J. Acoust. Soc. Am.
109
,
2852
2861
.
31.
Müller
,
M.
, and
Robertson
,
D.
(
1991
). “
Relationship between tone burst discharge pattern and spontaneous firing rate of auditory nerve fibers in the guinea-pig
,”
Hear. Res.
57
,
63
70
.
32.
Nuttall
,
A. L.
, and
Dolan
,
D. F.
(
1996
). “
Steady-state sinusoidal velocity responses of the basilar membrane in guinea-pig
,”
J. Acoust. Soc. Am.
99
,
1556
1565
.
33.
Patterson
,
R. D.
,
Allerhand
,
M. H.
, and
Giguére
,
C.
(
1995
). “
Time domain modeling of peripheral auditory processing: A modular architecture and a software platform
,”
J. Acoust. Soc. Am.
98
,
1890
1894
.
34.
Patterson, R. D., Nimmo-Smith, I., Holdsworth, J., and Rice, P. (1988). “Spiral vos final report, Part A: The auditory filterbank,” Cambridge Electronic Design, Contract Rep. (Apu 2341).
35.
Pressnitzer, D., Cheveigne, A., and Winter, I. M. (2002). “Perceptual pitch shift for sounds with similar waveform autocorrelation,” Acoustic Research Letters On-line 3(1).
36.
Relkin
,
E. M.
, and
Pelli
,
D. G.
(
1987
). “
Probe tone thresholds in the auditory-nerve measured by 2-interval forced choice procedures
,”
J. Acoust. Soc. Am.
82
,
1679
1691
.
37.
Rhode
,
W. S.
(
1971
). “
Observations for vibration of the basilar membrane using the Mossbauer technique
,”
J. Acoust. Soc. Am.
49
,
1218
1231
.
38.
Robert
,
A.
, and
Eriksson
,
J. L.
(
1999
). “
A composite model of the auditory periphery for simulating responses to complex sounds
,”
J. Acoust. Soc. Am.
106
,
1852
1864
.
39.
Ruggero
,
M.
,
Rich
,
N. C.
,
Recio
,
A.
,
Narayan
,
S. S.
, and
Robles
,
N.
(
1997
). “
Basilar membrane responses to tones at the base of the chinchilla
,”
J. Acoust. Soc. Am.
101
,
2151
2163
.
40.
Sachs
,
M. B.
, and
Abbas
,
P. J.
(
1974
). “
Rate versus level functions for auditory-nerve fibers in cats: tone burst stimuli
,”
J. Acoust. Soc. Am.
56
,
1835
1847
.
41.
Sachs
,
M. B.
,
Bruce
,
I. C.
,
Miller
,
R. L.
, and
Young
,
E. D.
(
2002
). “
Biological basis of hearing aid design
,”
Ann. Biomed. Eng.
30
,
157
168
.
42.
Schoonhoven
,
R.
,
Keijzer
,
J.
,
Versnel
,
H.
, and
Prijs
,
V. F.
(
1994
). “
A dual filter model describing single-fiber responses to clicks in the normal and noise-damaged cochlea
,”
J. Acoust. Soc. Am.
95
,
2104
2121
.
43.
Shamma
,
S. A.
,
Chadwick
,
R. S.
,
Wilbur
,
W. J.
,
Morrish
,
K. A.
, and
Rinzel
,
J.
(
1986
). “
A biophysical model of the cochlear processing: Intensity dependence of pure tone responses
,”
J. Acoust. Soc. Am.
80
,
133
145
.
44.
Summer
,
C. J.
,
Lopez-Poveda
,
E. A.
,
O’Mard
,
L. P.
, and
Meddis
,
R.
(
2002
). “
A revised model of the inner-hair-cell and auditory nerve complex
,”
J. Acoust. Soc. Am.
111
,
2178
2188
.
45.
Sumner
,
C. J.
,
Lopez-Poveda
,
E. A.
,
O’Mard
,
L. P.
, and
Meddis
,
R.
(
2003
). “
Adaptation in a revised inner-hair cell model
,”
J. Acoust. Soc. Am.
113
,
893
901
.
46.
Tchorz
,
J.
, and
Kollmeier
,
B.
(
1999
). “
A model of auditory perception as a front end for automatic speech recognition
,”
J. Acoust. Soc. Am.
106
,
2040
2050
.
47.
Winter
,
I. M.
, and
Palmer
,
A. R.
(
1991
). “
Intensity coding in low-frequency auditory-nerve fibers of the guinea-pig
,”
J. Acoust. Soc. Am.
90
,
1958
1967
.
48.
Winter
,
I. M.
,
Robertson
,
D.
, and
Yates
,
G. K.
(
1990
). “
Diversity of characteristic frequency rate-intensity functions in guinea pig auditory nerve fibers
,”
Hear. Res.
45
,
191
202
.
49.
Yates
,
G. K.
,
Winter
,
I. M.
, and
Robertson
,
D.
(
1990
). “
Basilar membrane nonlinearity determines auditory nerve rate-intensity functions and cochlear dynamic range
,”
Hear. Res.
45
,
203
220
.
50.
Zhang
,
X. D.
,
Heinz
,
M. G.
,
Bruce
,
I. C.
, and
Carney
,
L. H.
(
2001
). “
A phenomenological model for the responses of auditory-nerve fibers: I. Non-linear tuning with compression and suppression
,”
J. Acoust. Soc. Am.
109
,
648
670
.
This content is only available via PDF.
You do not currently have access to this content.