A modal computation of a complete clarinet is presented by the association of finite-element models of the reed and of part of the pipe with a lumped-element model of the rest of the pipe. In the first part, we compare modal computations of the reed and the air inside the mouthpiece and barrel with measurements performed by holographic interferometry. In the second part, the complete clarinet is modeled by adjoining a series of lumped elements for the remaining part of the pipe. The parameters of the lumped-resonator model are determined from acoustic impedance measurements. Computed eigenmodes of the whole system show that modal patterns of the reed differ significantly whether it is alone or coupled to air. Some modes exhibit mostly reed motion and a small contribution of the acoustic pressure inside the pipe. Resonance frequencies measured on a clarinet with the mouthpiece replaced by the cylinder of equal volume differ significantly from the computed eigenfrequencies of the clarinet taking the actual shape of the mouthpiece into account and from those including the (linear) dynamics of the reed. This suggests revisiting the customary quality index based on the alignment of the peaks of the input acoustical impedance curve.

1.
C. J. Nederveen, Acoustical Aspects of Woodwind Instruments (Illinois University Press (first ed. Frits Knuf Pub., Amsterdam), Dekalb, 1998 (first ed. 1968)).
2.
A. H. Benade, Fundamentals of Musical Acoustics (Oxford University Press, New York, 1976).
3.
J. Kergomard, “Elementary considerations on reed-instrument oscillations,” in Mechanics of Musical Instruments (Springer, New York, 1995).
4.
D.
Campbell
, “
Nonlinear dynamics of musical reed and brass wind instruments
,”
Contemp. Phys.
40
,
415
431
(
1999
).
5.
J. Gilbert, “Étude des instruments à anche simple” (On simple reed instruments), Ph.D. thesis, Université du Maine-Le Mans, 1991.
6.
X.
Boutillon
and
V.
Gibiat
, “
Evaluation of the acoustical stiffness of saxophone reeds under playing conditions by using the reactive power approach
,”
J. Acoust. Soc. Am.
100
,
1178
1189
(
1996
).
7.
R.
Schumacher
, “
Ab initio calculations of the oscillations of a clarinet
,”
Acustica
48
,
73
85
(
1981
).
8.
M.
Mcintyre
,
R.
Schumacher
, and
J.
Woodhouse
, “
On the oscillations of musical-instruments
,”
J. Acoust. Soc. Am.
74
,
1325
1345
(
1983
).
9.
C.
Maganza
,
R.
Causse
, and
F.
Laloe
, “
Bifurcations, period doublings and chaos in clarinet-like systems
,”
Europhys. Lett.
1
,
295
302
(
1986
).
10.
X.
Rodet
and
C.
Vergez
, “
Nonlinear dynamics in physical models: Simple feedback-loop systems and properties
,”
Comput. Music J.
23
,
18
34
(
1999
).
11.
J.
Smith
, “
Physical modeling using digital wave-guides
,”
Comput. Music J.
16
,
74
98
(
1992
).
12.
B.
Gazengel
,
J.
Gilbert
, and
N.
Amir
, “
Time-domain simulation of single reed wind instrument—From the measured input impedance to the synthesis signal—Where are the traps?
,”
Acta Acustica
3
,
445
472
(
1995
).
13.
E. Ducasse, “Modelisation et simulation dans le domaine temporel d’instruments à vent a anche simple en situation de jeu” (Time-domain model and simulation of simple-reed instruments in playing conditions), Ph.D. thesis, Université du Maine-Le Mans, 2001.
14.
E.
Ducasse
, “
Models of musical-instruments for sound synthesis: Application to woodwind instruments
,”
J. Phys. (France)
51
,
837
840
(
1990
).
15.
S.
Stewart
and
W.
Strong
, “
Functional-model of a simplified clarinet
,”
J. Acoust. Soc. Am.
68
,
109
120
(
1980
).
16.
S.
Sommerfeldt
and
W.
Strong
, “
Simulation of a player clarinet system
,”
J. Acoust. Soc. Am.
83
,
1908
1918
(
1988
).
17.
B.
Gazengel
and
J.
Gilbert
, “
Numerical simulations in time and frequency domains—Comparative-study, application to single-reed woodwind instruments
,”
J. Phys. IV
4
,
577
580
(
1994
).
18.
P.
Hoekje
and
G.
Roberts
, “
Observed vibration patterns of clarinet reeds
,”
J. Acoust. Soc. Am.
99
,
2462
(A) (
1996
).
19.
I.
Lindevald
and
J.
Gower
, “
Vibrational modes of clarinet reeds
,”
J. Acoust. Soc. Am.
102
,
3085
(A) (
1997
).
20.
B. Richardson (private communication).
21.
D.
Casadonte
, “
The perfect clarinet reed? Vibrational modes of realistic clarinet reeds
,”
J. Acoust. Soc. Am.
94
,
1807
(A) (
1993
).
22.
M. Facchinetti, “Etude des vibrations de l’anche de la clarinette” and “Analisi del comportamento dinamico di un clarinetto,” Ecole Polytechnique-Paris and Politecnico-Milano (1999).
23.
M.
Facchinetti
,
X.
Boutillon
, and
A.
Constantinescu
, “
Application of modal analysis and synthesis of reed and pipe to numerical simulations of a clarinet
,”
J. Acoust. Soc. Am.
108
,
2590
(A) (
2000
).
24.
E.
Marandas
,
V.
Gibiat
,
C.
Besnainou
, and
N.
Grand
, “
Mechanical characterization of woodwind reeds
,”
J. Phys. IV
4
,
633
636
(
1994
).
25.
E.
Obataya
and
M.
Norimoto
, “
Acoustic properties of a reed (Arundo donax L.) used for the vibrating plate of a clarinet
,”
J. Acoust. Soc. Am.
106
,
1106
1110
(
1999
).
26.
R.-J. Gibert, Vibrations des Structures-Interactions avec les Fluides (Eyrolles, Paris, 1988).
27.
K.
Menou
,
B.
Audit
,
X.
Boutillon
, and
H.
Vach
, “
Holographic study of a vibrating bell: An undergraduate laboratory experiment
,”
Am. J. Phys.
66
,
380
385
(
1998
).
28.
V.
Gibiat
and
F.
Laloe
, “
Acoustical impedance measurements by the 2-microphone-3-calibration (tmtc) method
,”
J. Acoust. Soc. Am.
88
,
2533
2545
(
1990
).
29.
V. Gibiat, “Mesures d’impédance acoustique pour la clarinette,” proprietary software and private communication, 1999.
30.
B. Gazengel, “Caractérisation … des instruments à anche simple” (Characterization … of simple reed instruments), Ph.D. thesis, Université du Maine-Le Mans, 1994.
31.
F.
Pinard
,
B.
Laine
, and
H.
Vach
, ”
Musical quality assessment of clarinet reeds using optical holography
,”
J. Acoust. Soc. Am.
113
,
1736
1742
(
2003
).
This content is only available via PDF.
You do not currently have access to this content.