An ultrasonic reflectivity method is proposed for measuring porosity and tortuosity of porous materials having a rigid frame. Porosity is the relative fraction by volume of the air contained within a material. Tortuosity is a geometrical parameter which intervenes in the description of the inertial effects between the fluid filled the porous material and its structure at high frequency range. It is generally easy to evaluate the tortuosity from transmitted waves, this is not the case for porosity because of its weak sensitivity in transmitted mode. The proposed method is based on measurement of reflected wave by the first interface of a slab of rigid porous material. This method is obtained from a temporal model of the direct and inverse scattering problems for the propagation of transient ultrasonic waves in a homogeneous isotropic slab of porous material having a rigid frame [Z. E. A. Fellah, M. Fellah, W. Lauriks, and C. Depollier, J. Acoust. Soc. Am. 113, 61 (2003)]. Reflection and transmission scattering operators for a slab of porous material are derived from the responses of the medium to an incident acoustic pulse at oblique incidence. The porosity and tortuosity are determined simultaneously from the measurements of reflected waves at two oblique incidence angles. Experimental and numerical validation results of this method are presented.

1.
Z. E. A.
Fellah
,
M.
Fellah
,
W.
Lauriks
, and
C.
Depollier
, “
Direct and inverse scattering of transient acoustic waves by a slab of rigid porous material
,”
J. Acoust. Soc. Am.
113
,
61
73
(
2003
).
2.
Z. E. A.
Fellah
and
C.
Depollier
, “
Transient acoustic wave propagation in rigid porous media: A time-domain approach
,”
J. Acoust. Soc. Am.
107
,
683
688
(
2000
).
3.
Z. E. A.
Fellah
,
C.
Depollier
, and
M.
Fellah
, “
An approach to direct and inverse time-domain scattering of acoustic waves from rigid porous materials by a fractional calculus based method
,”
J. Sound Vib.
244
,
359
366
(
2001
).
4.
Z. E. A.
Fellah
,
C.
Depollier
, and
M.
Fellah
, “
Application of fractional calculus to the sound waves propagation in rigid porous materials: Validation via ultrasonic measurements
,”
Acust. Acta Acust.
88
,
34
39
(
2002
).
5.
D. L.
Johnson
,
J.
Koplik
, and
R.
Dashen
, “
Theory of dynamic permeability and tortuosity in fluid-saturated porous media
,”
J. Fluid Mech.
176
,
379
402
(
1987
).
6.
J. F. Allard, Propagation of Sound in Porous Media: Modeling Sound Absorbing Materials (Chapman and Hall, London, 1993).
7.
M. A.
Biot
, “
The theory of propagation of elastic waves in fluid-saturated porous solid. I. Low frequency range
,”
J. Acoust. Soc. Am.
28
,
168
178
(
1956
).
8.
M. A.
Biot
, “
The theory of propagation of elastic waves in fluid-saturated porous solid. II. Higher frequency range
,”
J. Acoust. Soc. Am.
28
,
179
191
(
1956
).
9.
K.
Attenborough
, “
Acoustical characteristics of porous materials
,”
Phys. Lett.
82
,
179
227
(
1982
).
10.
L. L.
Beranek
, “
Acoustic impedance of porous materials
,”
J. Acoust. Soc. Am.
13
,
248
260
(
1942
).
11.
C. Zwikker and C. W. Kosten, Sound Absorbing Materials (Elsevier, New York, 1949).
12.
Y.
Champoux
and
J. F.
Allard
, “
New empirical equations for sound propagation in rigid frame fibrous materials
,”
J. Acoust. Soc. Am.
91
,
3346
3353
(
1992
).
13.
D.
Lafarge
,
P.
Lemarnier
,
J. F.
Allard
, and
V.
Tarnow
, “
Dynamic compressibility of air in porous structures at audible frequencies
,”
J. Acoust. Soc. Am.
102
,
1995
2006
(
1996
).
14.
R. W.
Leonard
, “
Simplified porosity measurements
,”
J. Acoust. Soc. Am.
20
,
39
41
(
1948
).
15.
E.
Guyon
,
L.
Oger
, and
T. J.
Plona
, “
Transport properties in sintered porous media composed of two particles sizes
,”
J. Phys. D
20
,
1637
1644
(
1987
).
16.
D. L.
Johnson
,
T. J.
Plona
,
C.
Scala
,
F.
Psierb
, and
H.
Kojima
, “
Tortuosity and acoustic slow waves
,”
Phys. Rev. Lett.
49
,
1840
1844
(
1982
).
17.
J.
Van Brakel
,
S.
Modry
, and
M.
Svata
, “
Mercury porosimetry: State of the art
,”
Powder Technol.
29
,
1
12
(
1981
).
18.
Y.
Champoux
,
M. R.
Stinson
, and
G. A.
Daigle
, “
Air-based system for the measurement of porosity
,”
J. Acoust. Soc. Am.
89
,
910
916
(
1991
).
19.
P.
Leclaire
,
L.
Kelders
,
W.
Lauriks
,
N. R.
Brown
,
M.
Melon
, and
B.
Castagnède
, “
Determination of viscous and thermal characteristics lengths of plastic foams by ultrasonic measurements in helium and air
,”
J. Appl. Phys.
80
,
2009
2012
(
1996
).
20.
S. G. Samko, A. A. Kilbas, and O. I. Marichev, Fractional Integrals and Derivatives: Theory and Applications (Gordon and Breach Science, Amsterdam, 1993).
21.
N.
Brown
,
M.
Melon
,
V.
Montembault
,
B.
Castagnède
,
W.
Lauriks
, and
P.
Leclaire
, “
Evaluation of viscous characteristic length of air-saturated porous materials from the ultrasonic dispersion curve
,”
C. R. Acad. Sci. Paris
,
322
,
121
127
(
1996
).
This content is only available via PDF.
You do not currently have access to this content.