A one-dimensional (1D) Fourier–Bessel series method for computing and tuning (beamforming) the linear lossless field of flat pulsed wave annular arrays is developed and supported with both numerical simulation and experimental verification. The technique represents a new method for modeling and tuning the propagated field by linking the quantized surface pressure profile to a known set of limited diffraction Bessel beams propagating into the medium. This enables derivation of an analytic expression for the field at any point in space and time in terms of the transducer surface pressure profile. Tuning of the field then also follows by formulating a least-squares design for the transducer surface pressure with respect to a given desired field in space and time. Simulated and experimental results for both field computation and tuning are presented in the context of a 10-ring annular array operating at a central frequency of 2.5 MHz in water.

1.
G. Tolstov, Fourier Series (Dover, New York, 1962).
2.
F. Bowman, Introduction to Bessel Functions (Dover, New York, 1958).
3.
J. A. Stratton, Electromagnetic Theory (McGraw–Hill, New York, 1941), p. 356.
4.
J.
Durnin
, “
Exact solutions for nondiffracting beams. I. The scalar theory
,”
J. Opt. Soc. Am. A
4
,
651
654
(
1987
).
5.
J.-Y.
Lu
and
J. F.
Greenleaf
, “
Nondiffracting X waves—Exact solutions to free-space scalar wave equation and their finite aperture realizations
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
39
,
19
31
(
1992
).
6.
J.-Y.
Lu
and
J. F.
Greenleaf
, “
Ultrasonic nondiffracting transducer for medical imaging
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
37
,
438
447
(
1990
).
7.
P. R.
Stepanishen
and
J.
Sun
, “
Acoustic bullets: Transient Bessel beams generated by planar apertures
,”
J. Acoust. Soc. Am.
102
,
3308
3318
(
1997
).
8.
S.
Holm
, “
Bessel and conical beams and approximation with annular arrays
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
45
,
712
718
(
1998
).
9.
P. R.
Stepanishen
, “
Acoustic bullets/transient Bessel beams: Near to far field transition via an impulse response approach
,”
J. Acoust. Soc. Am.
103
,
1742
1751
(
1998
).
10.
P. R.
Stepanishen
, “
A generalized modal impulse response and Fourier transform approach to investigate acoustic transient Bessel beams and Bessel bullets
,”
J. Acoust. Soc. Am.
105
,
1493
1502
(
1999
).
11.
J.-Y.
Lu
and
A.
Liu
, “
An X wave transform
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
47
,
1472
1481
(
2000
).
12.
P. D.
Fox
and
S.
Holm
, “
Modelling of CW annular arrays using limited diffraction Bessel beams
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
49
,
85
93
(
2002
).
13.
P. D.
Fox
,
J.
Cheng
, and
J.-Y.
Lu
, “
Fourier-bessel field calculation and tuning of a CW annular array
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
49
,
1179
1190
(
2002
).
14.
J. H.
Mcleod
, “
The Axicon: A new type of optical element
,”
J. Opt. Soc. Am.
44
,
592
(
1954
).
15.
C. B.
Burckhardt
,
H.
Hoffmann
, and
P. A.
Grandchamp
, “
Ultrasound axicon: A device for focusing over a large depth
,”
J. Acoust. Soc. Am.
54
,
1628
1630
(
1973
).
16.
J.
Fagerholm
,
A. T.
Friberg
,
J.
Huttunen
,
D. P.
Morgan
, and
M. M.
Salomaa
, “
Angular-spectrum representation of nondiffracting X waves
,”
Phys. Rev. E
54
,
4347
4352
(
1996
).
17.
K.
Uehara
and
H.
Kikuchi
, “
Generation of near diffraction-free laser beams
,”
Appl. Phys. B: Photophys. Laser Chem.
48
,
125
129
(
1989
).
18.
A.
Vasara
,
J.
Turunen
, and
A. T.
Friberg
, “
Realization of general nondiffracting beams with computer-generated holograms
,”
J. Opt. Soc. Am. A
6
,
1748
1754
(
1989
).
19.
J. N.
Brittingham
, “
Focus wave modes in homogeneous Maxwell’s equations: Transverse electric mode
,”
J. Appl. Phys.
54
,
1179
1189
(
1983
).
20.
R. W.
Ziolkowski
, “
Exact solutions of the wave equation with complex source locations
,”
J. Math. Phys.
26
,
861
863
(
1985
).
21.
R. W.
Ziolkowski
,
D. K.
Lewis
, and
B. D.
Cook
, “
Evidence of localized wave transmission
,”
Phys. Rev. Lett.
62
,
147
150
(
1985
).
22.
J.-Y.
Lu
and
J. F.
Greenleaf
, “
Pulse-echo imaging using a nondiffracting beam transducer
,”
Ultrasound Med. Biol.
17
,
265
281
(
1991
).
23.
J.-Y.
Lu
,
H.
Zou
, and
J. F.
Greenleaf
, “
Biomedical ultrasound beam forming
,”
Ultrasound Med. Biol.
20
,
403
428
(
1994
).
24.
J.-Y.
Lu
, “
2D and 3D high frame rate imaging with limited diffraction beams
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
44
,
839
856
(
1997
).
25.
J.-Y. Lu and J. F. Greenleaf, “Evaluation of a nondiffracting transducer for tissue characterization,” IEEE 1990 Ultrasonics Symposium Proceedings 90CH2938-9, 1990, Vol. 2, pp. 795–798.
26.
J.-Y.
Lu
,
X.-L.
Xu
,
H.
Zou
, and
J. F.
Greenleaf
, “
Application of Bessel beam for Doppler velocity estimation
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
42
,
649
662
(
1995
).
27.
J.-Y.
Lu
and
J. F.
Greenleaf
, “
Producing deep depth of field and depth-independent resolution in NDE with limited diffraction beams
,”
Ultrason. Imaging
15
,
134
149
(
1993
).
28.
J.-Y.
Lu
and
S.
He
, “
Optical X waves communications
,”
Opt. Commun.
161
,
187
192
(
1999
).
29.
J.
Ojeda-Castaneda
and
A.
Noyola-lglesias
, “
Nondiffracting wavefields in grin and free-space
,”
Microwave Opt. Technol. Lett.
3
,
430
433
(
1990
).
30.
J.
Durnin
,
J. J.
Miceli
, Jr.
, and
J. H.
Eberly
, “
Diffraction-free beams
,”
Phys. Rev. Lett.
58
,
1499
1501
(
1987
).
31.
S. Holm and P. D. Fox, “Analysis of Bessel beam quantisation in annular arrays,” Proceedings of the 22nd Scandinavian Symposium on Physical Acoustics, 1999, pp. 43, 44, Ustaoset, Norway, ISSN 1501–6773.
32.
P. D.
Fox
and
S.
Holm
, “
Decomposition of acoustic fields in quantised Bessel beams
,”
Ultrasonics
38
,
190
194
(
2000
).
33.
J.-Y.
Lu
and
J. F.
Greenleaf
, “
Experimental verification of nondiffracting X waves
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
39
,
441
446
(
1992
).
34.
G. E.
Tupholme
, “
Generation of acoustic pulses by baffled plane pistons
,”
Mathematika
16
,
209
224
(
1969
).
35.
P. R.
Stepanishen
, “
The time-dependent force and radiation impedance on a piston in a rigid infinite planar baffle
,”
J. Acoust. Soc. Am.
49
,
841
849
(
1971
).
36.
P. R.
Stepanishen
, “
Acoustic transients from planar axisymmetric vibrators using the impulse response approach
,”
J. Acoust. Soc. Am.
70
,
1176
1181
(
1981
).
37.
M. Arditi, F. S. Forster, and J. Hunt, “Transient fields of concave annular arrays,” 3, 37–61 (1981).
38.
J. A. Jensen, “Field: A program for simulating ultrasound systems,” MBEC 10th Nordic-Baltic Conference on Biomedical Imaging, 1996, Vol. 4, Supplement 1, Part 1, pp. 351–353.
39.
J. A.
Jensen
, “
A new calculation procedure for spatial impulse responses in ultrasound
,”
J. Acoust. Soc. Am.
105
,
3266
3274
(
1999
).
This content is only available via PDF.
You do not currently have access to this content.