An acoustic-to-seismic system to detect buried antipersonnel mines exploits airborne acoustic waves penetrating the surface of the ground. Acoustic waves radiating from a sound source above the ground excite Biot type I and II compressional waves in the porous soil. The type I wave and type II waves refract toward the normal and cause air and soil particle motion. If a landmine is buried below the surface of the insonified area, these waves are scattered or reflected by the target, resulting in distinct changes to the acoustically coupled ground motion. A scanning laser Doppler vibrometer measures the motion of the ground surface. In the past, this technique has been employed with remarkable success in locating antitank mines during blind field tests [Sabatier and Xiang, IEEE Trans. Geosci. Remote Sens. 39, 1146–1154 (2001)]. The humanitarian demining mission requires an ability to locate antipersonnel mines, requiring a surmounting of additional challenges due to a plethora of shapes and smaller sizes. This paper describes an experimental study on the methods used to locate antipersonnel landmines in recent field measurements.

1.
J. M. Sabatier and K. E. Gilbert, “Method for detecting buried object by measuring seismic vibrations induced by acoustical coupling with a remote source of sound,” U.S. Patent, No. 6,081,481 (2000).
2.
J. M.
Sabatier
and
N.
Xiang
, “
An investigation of acoustic-to-seismic coupling to detect buried anti-tank landmines
,”
IEEE Trans. Geosci. Remote Sens.
39
,
1146
1154
(
2001
).
3.
J. Sabatier and N. Xiang, “Laser-Doppler Based Acoustic-to-seismic detection of buried mines,” Proc. SPIE 3710, Conference on Detection and Remediation Technologies for Mines and Minelike Targets IV, edited by A. C. Dubey et al. (1999), pp. 215–222.
4.
N. Xiang and J. Sabatier, “Land mine detection measurements using acoustic-to-seismic coupling,” Proc. SPIE 3710, Conference on Detection and Remediation Technologies for Mines and Minelike Targets V, edited by A. C. Dubey et al. (2000), pp. 645–655.
5.
D.
Donskoy
,
A.
Ekimov
,
N.
Sedunov
, and
M.
Tsionskiy
, “
Nonlinear seismo-acoustic land mine detection and discrimination
,”
J. Acoust. Soc. Am.
111
,
2705
2714
(
2002
).
6.
W. R.
Scott
, Jr.
,
J. S.
Martin
, and
G.
Larson
, “
Experimental model for a seismic landmine detection system
,”
IEEE Trans. Geosci. Remote Sens.
39
,
1155
1164
(
2001
).
7.
S. W. McKnight, C. A. DiMarzio, W. Li, D. O. Hogenboom, and G. O. Sauermann, “Laser-induced acoustic detection of buried objects,” Proc. SPIE, Vol. 3392, Conference on Detection and Remediation Technologies for Mines and Minelike Targets III, edited by A. C. Dubey et al. (1998), pp. 231–238.
8.
C. G. Don, D. E. Lawrence, and A. J. Rogers, “Using acoustic impulse to detect buried objects,” Proc. ICA 1998, pp. 1759–1760.
9.
J. M.
Sabatier
,
H. E.
Bass
,
L. N.
Bolen
,
K.
Attenborough
, and
V. V. S. S.
Sastry
, “
The interaction of airborne sound with the porous ground. The theoretical formulation
,”
J. Acoust. Soc. Am.
79
,
1345
1352
(
1986
).
10.
M. A.
Biot
, “
Theory of propagation of elastic waves in a fluid saturated porous solid. II. Higher frequency range
,”
J. Acoust. Soc. Am.
28
,
179
191
(
1956
).
11.
H. E.
Bass
,
L. N.
Bolen
,
D.
Cress
,
J.
Lundien
, and
M.
Flohr
, “
Coupling of airborne sound into the earth: Frequency dependence
,”
J. Acoust. Soc. Am.
67
,
1502
1506
(
1980
).
12.
K.
Attenborough
,
J. M.
Sabatier
,
H. E.
Bass
, and
L. N.
Bolen
, “
The acoustic transfer function at the surface of a layered poroelastic soil
,”
J. Acoust. Soc. Am.
79
,
1353
1358
(
1986
).
13.
J. M.
Sabatier
,
H. E.
Bass
,
L. N.
Bolen
, and
K.
Attenborough
, “
Acoustically induced seismic waves
,”
J. Acoust. Soc. Am.
80
,
646
649
(
1986
).
14.
J. M.
Sabatier
,
H.
Hess
,
W. P.
Arnott
,
K.
Attenborough
,
M. J. M.
Roemkens
, and
E. H.
Grissinger
, “
In situ measurements of soil physical properties by acoustical techniques
,”
Soil Sci. Soc. Am. J.
54
,
658
672
(
1990
).
15.
C. J.
Hickey
and
J. M.
Sabatier
, “
Measurements of two types of dilatational waves in an air-filled unconsolidated sand
,”
J. Acoust. Soc. Am.
102
,
128
136
(
1997
).
16.
W. P.
Arnott
and
J.
Sabatier
, “
Laser-Doppler vibrometer measurements of acoustic to seismic coupling
,”
Appl. Acoust.
30
,
279
291
(
1990
).
17.
E. M. Rosen, K. D. Sherbondy, and J. M. Sabatier, “Performance Assessment of a Blind Test using the University of Mississippi’s Acoustic/Seismic Laser Doppler Vibrometer (LDV) Mine Detection Apparatus at A. P. Hill,” in Proc. SPIE Conference on Detection and Remediation Technologies for Mines and Minelike Targets V, edited by A. C. Dubey et al., paper 4037-74 (2000), pp. 656–666.
18.
C. B. Scruby and L. E. Drain, Laser Ultrasonics Techniques and Applications (Hilger, Bristol, Philadelphia and New York, 1990).
19.
K. Attenborough, H. E. Bass, and J. M. Sabatier, “Elastic properties of the earth’s surface,” in Handbook of Elastic Properties of Solids, Liquids, and Gases, Vol. III, edited by Levy, H. E. Bass, and Stern (Academic, 2001).
20.
MATLAB User’s Guide: Image Processing Toolbox,” The Math Works Inc.
21.
D.
Costley
,
J.
Sabatier
, and
N.
Xiang
, “
Noise and vibration control for land mine detection
,”
J. Acoust. Soc. Am.
107
,
2873
(
2000
).
22.
S. Yu, A. Gandhe, T. R. Witten, and R. K. Mehra, “Physically based method for automatic mine detection using acoustic data,” Proc. SPIE Conference on Detection and Remediation Technologies for Mines and Minelike Targets V, edited by A. C. Dubey et al. (in press).
23.
R. Waxler, D. Velea, and J. M. Sabatier, “A fast effective model for the scattering of normally incident sound off of a buried landmine,” J. Acoust. Soc. Am. (submitted).
24.
N. Xiang and J. Sabatier, “Fast m-sequence transform for laser-Doppler based mine detection,” Proc. SPIE Conference on Signal Processing, Sensor Fusion, and Target Recognition VIII, edited by I. Kadar, SPIE 2720 (1999), pp. 390–396.
25.
P. Goggans, C. R. Smith, and N. Xiang, “Increasing Speckle Noise Immunity in LDV-Based Acoustic Mine Detection,” in Proc. SPIE Conference on Detection and Remediation Technologies for Mines and Minelike Targets V, edited by A. C. Dubey et al., paper 4038-80 (2000), pp. 719–724.
26.
N.
Xiang
and
J. M.
Sabatier
, “
Iterative model-based automatic target recognition for acoustic landmine detection
,”
J. Acoust. Soc. Am.
110
,
2740
(
2001
).
This content is only available via PDF.
You do not currently have access to this content.