Due to the large compressibility of gas bubbles, layers of a bubbly liquid surrounded by pure liquid exhibit many resonances that can give rise to a strongly nonlinear behavior even for relatively low-level excitation. In an earlier paper [Druzhinin et al., J. Acoust. Soc. Am. 100, 3570 (1996)] it was pointed out that, by exciting the bubbly layer in correspondence of two resonant modes, so chosen that the difference frequency also corresponds to a resonant mode, it might be possible to achieve an efficient parametric generation of a low-frequency signal. The earlier work made use of a simplified model for the bubbly liquid that ignored the dissipation and dispersion introduced by the bubbles. Here a more realistic description of the bubble behavior is used to study the nonlinear oscillations of a bubble layer under both single- and dual-frequency excitation. It is found that a difference-frequency power of the order of 1% can be generated with incident pressure amplitudes of the order of 50 kPa or so. It appears that similar phenomena would occur in other systems, such as porous waterlike or rubberlike media.

1.
Akhatov
,
I.
,
Parlitz
,
U.
, and
Lauterborn
,
W.
(
1994
).”
Pattern formation in acoustic cavitation
,”
J. Acoust. Soc. Am.
96
,
3627
3635
.
2.
Belyaeva
,
I.
, and
Timanin
,
E.
(
1991
). “
Experimental study of the nonlinear properties of porous elastic media
,”
Sov. Phys. Acoust.
37
,
533
544
.
3.
Caflisch
,
R. E.
,
Miksis
,
M. J.
,
Papanicolaou
,
G.
, and
Ting
,
L.
(
1985
). “
Effective equations for wave propagation in bubbly liquids
,”
J. Fluid Mech.
153
,
259
273
.
4.
Carstensen
,
E. L.
, and
Foldy
,
L. L.
(
1947
). “
Propagation of sound through a liquid containing bubbles
,”
J. Acoust. Soc. Am.
19
,
481
501
.
5.
Clay, C. S., and Medwin, H. (1977). Acoustical Oceanography (Wiley, New York).
6.
Colonius
,
T.
,
d’Auria
,
F.
, and
Brennen
,
C. E.
(
2000
). “
Acoustic saturation in bubbly cavitating flow adjacent to an oscillating wall
,”
Phys. Fluids
12
,
2752
2761
.
7.
Commander
,
K. W.
, and
Prosperetti
,
A.
(
1989
). “
Linear pressure waves in bubbly liquids: comparison between theory and experiments
,”
J. Acoust. Soc. Am.
85
,
732
746
.
8.
d’Agostino
,
L.
, and
Brennen
,
C. E.
(
1988
). “
Acoustical absorption and scattering cross-sections of spherical bubble clouds
,”
J. Acoust. Soc. Am.
84
,
2126
2134
.
9.
Druzhinin
,
O. A.
,
Ostrovsky
,
L. A.
, and
Prosperetti
,
A.
(
1996
). “
Low-frequency acoustic wave generation in a resonant bubble layer
,”
J. Acoust. Soc. Am.
100
,
3570
3580
.
10.
Feng
,
Z. C.
, and
Leal
,
L. G.
(
1997
). “
Nonlinear bubble dynamics
,”
Annu. Rev. Fluid Mech.
29
,
201
243
.
11.
Gasenko
,
V. G.
,
Nakoryakov
,
V. E.
, and
Shreiber
,
I. R.
(
1979
). “
Nonlinear disturbances in a liquid containing gas bubbles
,”
Sov. Phys. Acoust.
25
,
385
388
.
12.
Harten
,
A.
(
1983
). “
High resolution schemes for hyperbolic conservation laws
,”
J. Comput. Phys.
49
,
357
393
.
13.
Kamath
,
V.
, and
Prosperetti
,
A.
(
1989
). “
Numerical integration methods in gas-bubble dynamics
,”
J. Acoust. Soc. Am.
85
,
1538
1548
.
14.
Kamath
,
V.
,
Prosperetti
,
A.
, and
Egolfopoulos
,
F.
(
1993
). “
A theoretical study of sonoluminescence
,”
J. Acoust. Soc. Am.
94
,
248
260
.
15.
Kogarko
,
B. S.
(
1964
). “
One-dimensional unsteady motion of a liquid with an initiation and progression of cavitation
,”
Dokl. Akad. Nauk SSSR
155
,
779
782
(in Russian).
16.
Kustov
,
L. M.
,
Nazarov
,
V. E.
,
Ostrovsky
,
L. A.
,
Sutin
,
A. M.
, and
Zamolin
,
S. V.
(
1982
). “
Parametric acoustic radiation with a bubble layer
,”
Acoust. Lett.
6
,
15
17
.
17.
Kuznetsov
,
V. V.
,
Nakoryakov
,
V. E.
,
Pokusaev
,
G.
, and
Shreiber
,
I. R.
(
1978
). “
Propagation of perturbations in a gas-liquid mixture
,”
J. Fluid Mech.
85
,
85
96
.
18.
Medwin, H., and Clay, C. S. (1997). Fundamentals of Ocean Acoustics (Morgan Kauffman, San Francisco).
19.
Naugolnykh, K., and Ostrovsky, L. (1998). Nonlinear Wave Processes in Acoustics (Cambridge U.P., Cambridge, UK), Chap. 1, pp. 25–30.
20.
Nigmatulin, R. I. (1991). Dynamics of Multiphase Media (Hemisphere, Washington), Vol. 1, Chap. 1, pp. 98–113.
21.
Omta
,
R.
(
1987
). “
Oscillations of a cloud of small bubbles of small and not so small amplitude
,”
J. Acoust. Soc. Am.
82
,
1018
1033
.
22.
Ostrovsky
,
L. A.
,
Sutin
,
A. M.
,
Soustova
,
I. A.
, and
Matveyev
,
A. I.
(
1998
). “
Nonlinear, low-frequency sound generation in a bubble layer: Theory and laboratory experiments
,”
J. Acoust. Soc. Am.
104
,
722
726
.
23.
Pierce, A. D. (1989). Acoustics (Acoustical Society of America, Woodbury, NY), Chap. 3, pp. 130–140.
24.
Plesset
,
M. S.
, and
Prosperetti
,
A.
(
1977
). “
Bubble dynamics and cavitation
,”
Annu. Rev. Fluid Mech.
9
,
145
185
.
25.
Prosperetti
,
A.
(
1984
). “
Bubble phenomena in sound fields: Part one
,”
Ultrasonics
22
,
69
77
.
26.
Prosperetti
,
A.
(
1991
). “
The thermal behaviour of oscillating gas bubbles
,”
J. Fluid Mech.
222
,
587
616
.
27.
Prosperetti, A. (2001). “Fundamental acoustic properties of bubbly liquids,” in Handbook of Elastic Properties of Solids, Liquids, and Gases, edited by M. Levy, H. E. Bass, and R. Stern (Academic, New York), Vol. 4, pp. 183–205.
28.
Prosperetti
,
A.
, and
Lezzi
,
A.
(
1986
). “
Bubble dynamics in a compressible liquid. Part 1. First-order theory
,”
J. Fluid Mech.
185
,
289
321
.
29.
Twersky
,
V.
(
1962
). “
On scattering of waves by random distributions. I. Free-space scatterer formalism
,”
J. Math. Phys.
3
,
700
715
.
30.
van Wijngaarden
,
L.
(
1968
). “
On the equations of motion for mixtures of liquid and gas bubbles
,”
J. Fluid Mech.
33
,
465
474
.
31.
Watanabe
,
M.
, and
Prosperetti
,
A.
(
1994
). “
Shock waves in dilute bubbly liquids
,”
J. Fluid Mech.
274
,
349
381
.
32.
Waterman
,
P. C.
, and
Truell
,
R.
(
1961
). “
Multiple scattering of waves
,”
J. Math. Phys.
2
,
512
537
.
33.
Zabolotskaya
,
E. A.
(
1977
). “
Two self-action mechanisms for sound waves propagating in a gas-liquid mixture
,”
Sov. Phys. Acoust.
23
,
338
340
.
34.
Zabolotskaya
,
E. A.
, and
Soluyan
,
S. I.
(
1973
). “
Emission of harmonic and combination frequency waves by air bubbles
,”
Sov. Phys. Acoust.
18
,
396
398
.
35.
Zhang
,
D. Z.
, and
Prosperetti
,
A.
(
1994
). “
Ensemble phase-averaged equations for bubbly flows
,”
Phys. Fluids
6
,
2956
2970
.
This content is only available via PDF.
You do not currently have access to this content.