A general spheroidal coordinate separation-of-variables solution is developed for the determination of the acoustic pressure distribution near the surface of a rigid spheroid for a monofrequency incident acoustic field of arbitrary character. Calculations are presented, for both the prolate and oblate geometries, demonstrating the effects of incident field orientation and character (plane-wave, spherical wave, cylindrical wave, and focused beam) on the resultant acoustic pressure distribution.

1.
R. D.
Spence
and
S.
Granger
, “
The scattering of sound from a prolate spheroid
,”
J. Acoust. Soc. Am.
23
,
701
706
(
1951
).
2.
A.
Silbiger
, “
Scattering of sound by an elastic prolate spheroid
,”
J. Acoust. Soc. Am.
35
,
564
570
(
1963
).
3.
T. B. A.
Senior
, “
The scattering from acoustically hard and soft prolate spheroids for axial incidence
,”
Can. J. Phys.
44
,
655
667
(
1966
).
4.
G.
Lauchle
, “
Short-wavelength acoustic diffraction by prolate spheroids
,”
J. Acoust. Soc. Am.
58
,
568
575
(
1975
).
5.
G.
Lauchle
, “
Short-wavelength backscattering by a prolate spheroid
,”
J. Acoust. Soc. Am.
58
,
576
580
(
1975
).
6.
W. K.
Blake
and
G. A.
Wilson
, “
Short-wavelength diffracted surface pressures on a rigid prolate spheroid
,”
J. Acoust. Soc. Am.
61
,
1419
1426
(
1977
).
7.
A.
Germon
and
G. C.
Lauchle
, “
Axisymmetric scattering of spherical waves by a prolate spheroid
,”
J. Acoust. Soc. Am.
65
,
1322
1327
(
1979
).
8.
R. H.
Hackman
,
G. S.
Sammelmann
,
K. L.
Williams
, and
D. H.
Trivett
, “
A reanalysis of the acoustic scattering from elastic spheroids
,”
J. Acoust. Soc. Am.
83
,
1255
1266
(
1988
).
9.
G. S.
Sammelmann
,
D. H.
Trivett
, and
R. H.
Hackman
, “
High-frequency scattering from rigid prolate spheroids
,”
J. Acoust. Soc. Am.
83
,
46
54
(
1988
).
10.
V. K.
Varadan
,
V. V.
Varadan
,
L. R.
Dragonette
, and
L.
Flax
, “
Computation of rigid body scattering by prolate spheroids using the T-matrix approach
,”
J. Acoust. Soc. Am.
71
,
22
25
(
1982
).
11.
L.
Flax
and
L. R.
Dragonette
, “
Analysis and computation of the acoustic scattering by an elastic prolate spheroid obtained from the T-matrix formulation
,”
J. Acoust. Soc. Am.
71
,
1077
1082
(
1982
).
12.
G. C.
Gaunaurd
and
M. F.
Werby
, “
Interpretation of the three-dimensional sound fields scattered by submerged elastic shells and rigid spheroidal bodies
,”
J. Acoust. Soc. Am.
84
,
673
680
(
1988
).
13.
Z.
Ye
,
E.
Hoskinson
,
R. K.
Dewey
,
L.
Ding
, and
D. M.
Farmer
, “
A method for acoustic scattering by slender bodies. I. Theory and verification
,”
J. Acoust. Soc. Am.
102
,
1964
1976
(
1997
).
14.
A. Maciulaitis, J. M. Seiner, and T. D. Norum, “Sound scattering by rigid oblate spheroids, with implication to pressure gradient microphones,” NASA, 1976, TN D-8140, pp. 1–40.
15.
C. Flammer, Spheroidal Wave Functions (Stanford University Press, Stanford, CA, 1957).
16.
J. P.
Barton
, “
Internal and near-surface electromagnetic fields for a spheroidal particle with arbitrary illumination
,”
Appl. Opt.
34
,
5542
5551
(
1995
).
17.
P. M. Morse and H. Feshbach, Methods of Theoretical Physics (McGraw-Hill, New York, 1953).
18.
J. A. Stratton, P. M. Morse, L. J. Chu, J. D. C. Little, and F. J. Corbato, Spheroidal Wave Functions (Wiley, New York, 1956).
19.
J. J. Bowman, T. B. A. Senior, and P. L. E. Uslenghi, Electromagnetic and Acoustic Scattering by Simple Shapes (North-Holland, Amsterdam, 1969).
20.
M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions With Formulas, Graphs, and Mathematical Tables (Dover, New York, 1970).
21.
S-J Zhang and J. Jin, Computation of Special Functions (Wiley, New York, 1996).
22.
J. P.
Barton
and
D. R.
Alexander
, “
Fifth-order corrected electromagnetic field components for a fundamental Gaussian beam
,”
J. Appl. Phys.
66
,
2800
2802
(
1989
).
This content is only available via PDF.
You do not currently have access to this content.