A general spheroidal coordinate separation-of-variables solution is developed for the determination of the acoustic pressure distribution near the surface of a rigid spheroid for a monofrequency incident acoustic field of arbitrary character. Calculations are presented, for both the prolate and oblate geometries, demonstrating the effects of incident field orientation and character (plane-wave, spherical wave, cylindrical wave, and focused beam) on the resultant acoustic pressure distribution.
REFERENCES
1.
R. D.
Spence
and S.
Granger
, “The scattering of sound from a prolate spheroid
,” J. Acoust. Soc. Am.
23
, 701
–706
(1951
).2.
A.
Silbiger
, “Scattering of sound by an elastic prolate spheroid
,” J. Acoust. Soc. Am.
35
, 564
–570
(1963
).3.
T. B. A.
Senior
, “The scattering from acoustically hard and soft prolate spheroids for axial incidence
,” Can. J. Phys.
44
, 655
–667
(1966
).4.
G.
Lauchle
, “Short-wavelength acoustic diffraction by prolate spheroids
,” J. Acoust. Soc. Am.
58
, 568
–575
(1975
).5.
G.
Lauchle
, “Short-wavelength backscattering by a prolate spheroid
,” J. Acoust. Soc. Am.
58
, 576
–580
(1975
).6.
W. K.
Blake
and G. A.
Wilson
, “Short-wavelength diffracted surface pressures on a rigid prolate spheroid
,” J. Acoust. Soc. Am.
61
, 1419
–1426
(1977
).7.
A.
Germon
and G. C.
Lauchle
, “Axisymmetric scattering of spherical waves by a prolate spheroid
,” J. Acoust. Soc. Am.
65
, 1322
–1327
(1979
).8.
R. H.
Hackman
, G. S.
Sammelmann
, K. L.
Williams
, and D. H.
Trivett
, “A reanalysis of the acoustic scattering from elastic spheroids
,” J. Acoust. Soc. Am.
83
, 1255
–1266
(1988
).9.
G. S.
Sammelmann
, D. H.
Trivett
, and R. H.
Hackman
, “High-frequency scattering from rigid prolate spheroids
,” J. Acoust. Soc. Am.
83
, 46
–54
(1988
).10.
V. K.
Varadan
, V. V.
Varadan
, L. R.
Dragonette
, and L.
Flax
, “Computation of rigid body scattering by prolate spheroids using the T-matrix approach
,” J. Acoust. Soc. Am.
71
, 22
–25
(1982
).11.
L.
Flax
and L. R.
Dragonette
, “Analysis and computation of the acoustic scattering by an elastic prolate spheroid obtained from the T-matrix formulation
,” J. Acoust. Soc. Am.
71
, 1077
–1082
(1982
).12.
G. C.
Gaunaurd
and M. F.
Werby
, “Interpretation of the three-dimensional sound fields scattered by submerged elastic shells and rigid spheroidal bodies
,” J. Acoust. Soc. Am.
84
, 673
–680
(1988
).13.
Z.
Ye
, E.
Hoskinson
, R. K.
Dewey
, L.
Ding
, and D. M.
Farmer
, “A method for acoustic scattering by slender bodies. I. Theory and verification
,” J. Acoust. Soc. Am.
102
, 1964
–1976
(1997
).14.
A. Maciulaitis, J. M. Seiner, and T. D. Norum, “Sound scattering by rigid oblate spheroids, with implication to pressure gradient microphones,” NASA, 1976, TN D-8140, pp. 1–40.
15.
C. Flammer, Spheroidal Wave Functions (Stanford University Press, Stanford, CA, 1957).
16.
J. P.
Barton
, “Internal and near-surface electromagnetic fields for a spheroidal particle with arbitrary illumination
,” Appl. Opt.
34
, 5542
–5551
(1995
).17.
P. M. Morse and H. Feshbach, Methods of Theoretical Physics (McGraw-Hill, New York, 1953).
18.
J. A. Stratton, P. M. Morse, L. J. Chu, J. D. C. Little, and F. J. Corbato, Spheroidal Wave Functions (Wiley, New York, 1956).
19.
J. J. Bowman, T. B. A. Senior, and P. L. E. Uslenghi, Electromagnetic and Acoustic Scattering by Simple Shapes (North-Holland, Amsterdam, 1969).
20.
M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions With Formulas, Graphs, and Mathematical Tables (Dover, New York, 1970).
21.
S-J Zhang and J. Jin, Computation of Special Functions (Wiley, New York, 1996).
22.
J. P.
Barton
and D. R.
Alexander
, “Fifth-order corrected electromagnetic field components for a fundamental Gaussian beam
,” J. Appl. Phys.
66
, 2800
–2802
(1989
).
This content is only available via PDF.
© 2003 Acoustical Society of America.
2003
Acoustical Society of America
You do not currently have access to this content.